Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 3(12): RESEARCH0081, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12537570

RESUMEN

We describe here our experience in annotating the Drosophila melanogaster genome sequence, in the course of which we developed several new open-source software tools and a database schema to support large-scale genome annotation. We have developed these into an integrated and reusable software system for whole-genome annotation. The key contributions to overall annotation quality are the marshalling of high-quality sequences for alignments and the design of a system with an adaptable and expandable flexible architecture.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genoma , Diseño de Software , Animales , Humanos , Internet
2.
Genome Biol ; 3(12): RESEARCH0082, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12537571

RESUMEN

The well-established inaccuracy of purely computational methods for annotating genome sequences necessitates an interactive tool to allow biological experts to refine these approximations by viewing and independently evaluating the data supporting each annotation. Apollo was developed to meet this need, enabling curators to inspect genome annotations closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila melanogaster genome and it is increasingly being used as a starting point for the development of customized annotation editing tools for other genome projects.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Diseño de Software , Animales , Sistemas de Administración de Bases de Datos , Humanos , Interfaz Usuario-Computador
3.
Yeast ; 18(3): 229-38, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11180456

RESUMEN

Wis1 is a mitogen-activated protein kinase kinase (MAPKK) that regulates mitosis and mediates stress responses in the fission yeast, Schizosaccharomyces pombe. wis1Delta strains are viable but stress-sensitive and show a mitotic delay. At high temperatures, wis1Delta cells cease division but cellular growth continues. Mutations that suppress the heat sensitivity of a wis1Delta strain were isolated and map to two apparently novel loci, sow1 (for suppressor of wis1Delta) and sow2. In addition to suppressing wis1Delta heat sensitivity, sow1 and sow2 can suppress wis1Delta osmosensitivity and cell cycle defects. sow1 and sow2 mutants in a wis1+ background were able to grow at higher temperatures than wild-type and sow1 showed a mitotic advance. The sow genes may therefore define a novel connection between stress tolerance and cell cycle control.


Asunto(s)
Ciclo Celular/genética , Genes Fúngicos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación/genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Ciclo Celular/fisiología , Genes Supresores/genética , Calor , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Mutagénesis , Schizosaccharomyces/enzimología , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/efectos de la radiación
4.
J Cell Sci ; 109 ( Pt 7): 1927-35, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8832415

RESUMEN

The wis1 protein kinase of Schizosaccharomyces pombe is a member of the MAP kinase kinase family. Loss of wis1 function has previously been reported to lead to a delay in the G2-mitosis transition, loss of viability in stationary phase, and hypersensitivity to osmotic shock. It acts at least in part by activating the MAP kinase homologue sty1; loss-of-function sty1 mutants share many phenotypes with wis1 deletion mutants. We show here that, in addition, loss of wis1 function leads to defective conjugation, and to suppression of the hyperconjugation phenotype of the pat1-114 mutation. Consistent with this, the induction of the mei2 gene, which is normally induced by nitrogen starvation, is defective in wis1 mutants. In wild-type cells, nitrogen starvation leads to mei2 induction through a fall in intracellular cyclic AMP (cAMP) level and activity of the cAMP-dependent protein kinase. We show here that wis1 function is required for mei2 induction following nitrogen starvation. Expression of the fbp1 gene is negatively regulated by cAMP in response to glucose limitation: induction of fbp1 also requires wis1 and sty1 function. Loss of wis1 is epistatic over increased fbp1 expression brought about by loss of adenylate cyclase (git2/cyr1) or cAMP-dependent protein kinase (pka1) function. These observations can be explained by a model in which the pka1 pathway negatively regulates the wis1 pathway, or the two pathways might act independently on downstream targets. The latter explanation is supported, at least as regards regulation of cell division, by the observation that loss of function of the regulatory subunit of the cAMP-dependent protein kinase (cgs1) brings about a modest increase in cell length at division in both wis1+ and wis1 delta genetic backgrounds.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Transducción de Señal , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA