Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258109

RESUMEN

Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. Different polymer-to-plasticizer ratios were systematically examined to formulate a printable ink with optimal viscosity. The resultant film, enriched with OLE, exhibited a substantial polyphenolic content of 13.15 ± 0.41 mg CAE/g, showcasing significant antioxidant and anti-inflammatory properties. Notably, the film demonstrated potent scavenging abilities against DPPH, ABTS, and NO radicals, with IC50 values of 0.66 ± 0.07, 0.47 ± 0.04, and 2.02 ± 0.14 mg/mL, respectively. In vitro release and diffusion studies were carried out and the release profiles revealed an almost complete release of polyphenols from the patch within 48 h. Additionally, the fabricated film exhibited the capacity to enhance cell motility and accelerate wound healing, evidenced by increased collagen I expression in BJ fibroblast cells. Structural assessments affirmed the ability of the patch to absorb exudates and maintain the optimal moisture balance, while biocompatibility studies underscored its suitability for biomedical applications. These compelling findings endorse the potential application of the developed film in advanced wound care, with the prospect of tailoring patches to individual patient needs.

2.
J Funct Biomater ; 14(9)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37754869

RESUMEN

Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.

3.
J Funct Biomater ; 14(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36826854

RESUMEN

Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel's material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Lately, research has been focused on hydrogels from natural sources. Polysaccharides have drawn attention in recent years as a promising material for biological applications, due to their biocompatibility, biodegradability, non-toxicity, and excellent mechanical properties. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects. This review summarizes hydrogels' classification, properties, and synthesis methods. Furthermore, it also covers several important natural polysaccharides (chitosan, alginate, hyaluronic acid, cellulose, and carrageenan) widely used as hydrogels for drug delivery and, in particular, their application in cancer treatment.

4.
J Funct Biomater ; 13(1)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225975

RESUMEN

Molecular recognition is a useful property shared by various molecules, such as antibodies, aptamers and molecularly imprinted polymers (MIPs). It allows these molecules to be potentially involved in many applications including biological and pharmaceutical research, diagnostics, theranostics, therapy and drug delivery. Antibodies, naturally produced by plasma cells, have been exploited for this purpose, but they present noticeable drawbacks, above all production cost and time. Therefore, several research studies for similar applications have been carried out about MIPs and the main studies are reported in this review. MIPs, indeed, are more versatile and cost-effective than conventional antibodies, but the lack of toxicity studies and their scarce use for practical applications, make it that further investigations on this kind of molecules need to be conducted.

5.
Risk Manag Healthc Policy ; 8: 45-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25960681

RESUMEN

BACKGROUND: Hepatitis C is a liver infection caused by hepatitis C virus. Its main complications are cirrhosis and liver cancer. According to the World Health Organization (WHO), more than 185 million people worldwide are infected with hepatitis C virus and, of these, 350,000 die every year. Due to the high disease prevalence and the existence of effective (and expensive) medical treatments able to dramatically change the prognosis, early detection programs can potentially prevent the development of serious chronic conditions, improve health, and save resources. OBJECTIVE: To summarize the available evidence on the cost-effectiveness of screening programs for hepatitis C. METHODS: A literature search was performed on PubMed and Scopus search engines. Trip database was queried to identify reports produced by the major Health Technology Assessment (HTA) agencies. Three reviewers dealt with study selection and data extraction blindly. RESULTS: Ten papers eventually met the inclusion criteria. In studies focusing on asymptomatic cohorts of individuals at general risk the cost/quality adjusted life year of screening programs ranged between US $4,200 and $50,000/quality adjusted life year gained, while in those focusing on specific risk factors the incremental cost-effectiveness ratio ranged between $848 and $128,424/quality adjusted life year gained. Age of the target population and disease prevalence were the main cost-effectiveness drivers. CONCLUSION: Our results suggest that, especially in the long run, screening programs represent a cost-effective strategy for the management of hepatitis C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA