Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917015

RESUMEN

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Lámina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Animales , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones
2.
Nucleus ; 14(1): 2262308, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37754663

RESUMEN

The Lmna knockout mouse (Lmna-/-) created by Sullivan and coworkers in 1999 has been widely used to examine lamin A/C function. The knockout allele contains a deletion of Lmna intron 7-exon 11 sequences and was reported to be a null allele. Later, Jahn and coworkers discovered that the mutant allele produces a 54-kDa truncated lamin A and identified, by RT-PCR, a Lmna cDNA containing exon 1-7 + exon 12 sequences. Because exon 12 encodes prelamin A's CaaX motif, the mutant lamin A is assumed to be farnesylated. In the current study, we found that the truncated lamin A in Lmna-/- mouse embryonic fibroblasts (MEFs) was predominantly nucleoplasmic rather than at the nuclear rim, leading us to hypothesize that it was not farnesylated. Our study revealed that the most abundant Lmna transcripts in Lmna-/- MEFs contain exon 1-7 but not exon 12 sequences. Exon 1-7 + exon 12 transcripts were detectable by PCR but in trace amounts. We suspect that these findings explain the nucleoplasmic distribution of the truncated lamin A in Lmna-/- MEFs, and subsequent cell transduction experiments support this suspicion. A truncated lamin A containing exon 1-7 sequence was nucleoplasmic, whereas a lamin A containing exon 1-7 + exon 12 sequences was located along the nuclear rim. Our study explains the nucleoplasmic targeting of truncated lamin A in Lmna-/- MEFs and adds to our understanding of a commonly used strain of Lmna-/- mice.


Asunto(s)
Fibroblastos , Lamina Tipo A , Animales , Ratones , Núcleo Celular , Lamina Tipo A/genética , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA