Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
medRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39148837

RESUMEN

Rationale: Identification and validation of circulating biomarkers for lung function decline in COPD remains an unmet need. Objective: Identify prognostic and dynamic plasma protein biomarkers of COPD progression. Methods: We measured plasma proteins using SomaScan from two COPD-enriched cohorts, the Subpopulations and Intermediate Outcomes Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene), and one population-based cohort, Multi-Ethnic Study of Atherosclerosis (MESA) Lung. Using SPIROMICS as a discovery cohort, linear mixed models identified baseline proteins that predicted future change in FEV1 (prognostic model) and proteins whose expression changed with change in lung function (dynamic model). Findings were replicated in COPDGene and MESA-Lung. Using the COPD-enriched cohorts, Gene Set Enrichment Analysis (GSEA) identified proteins shared between COPDGene and SPIROMICS. Metascape identified significant associated pathways. Measurements and Main Results: The prognostic model found 7 significant proteins in common (p < 0.05) among all 3 cohorts. After applying false discovery rate (adjusted p < 0.2), leptin remained significant in all three cohorts and growth hormone receptor remained significant in the two COPD cohorts. Elevated baseline levels of leptin and growth hormone receptor were associated with slower rate of decline in FEV1. Twelve proteins were nominally but not FDR significant in the dynamic model and all were distinct from the prognostic model. Metascape identified several immune related pathways unique to prognostic and dynamic proteins. Conclusion: We identified leptin as the most reproducible COPD progression biomarker. The difference between prognostic and dynamic proteins suggests disease activity signatures may be different from prognosis signatures.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39159077

RESUMEN

The biological mechanisms leading some tobacco-exposed individuals to develop early-stage chronic obstructive pulmonary disease (COPD) are poorly understood. This knowledge gap hampers development of disease-modifying agents for this prevalent condition. Accord-ingly, with National Heart, Lung and Blood Institute support, we initiated the SPIROMICS Study of Early COPD Progression (SOURCE), a multicenter observational cohort study of younger individuals with a history of cigarette smoking and thus at-risk for, or with, early-stage COPD. Our overall objectives are to identify those who will develop COPD earlier in life, characterize them thoroughly, and by contrasting them to those not developing COPD, define mechanisms of disease progression. SOURCE utilizes the established SPIROMICS clinical network. Its goal is to enroll n=649 participants, ages 30-55 years, all races/ethnicities, with ≥10 pack-years cigarette smoking, in either Global Initiative for Chronic Obstructive Lung Disease (GOLD) groups 0-2 or with Preserved Ratio Impaired Spirometry (PRISm); and an additional n=40 never-smoker controls. Participants undergo baseline and three-year follow-up visits, each including high-resolution computed tomography; respiratory oscillometry and spirometry (pre- and post-bronchodilator administration), exhaled breath condensate (baseline only); and extensive biospecimen collection, including sputum induction. Symptoms, interim healthcare utilization, and exacerbations are captured every six months via follow-up phone calls. An embedded bronchoscopy sub-study involving n=100 participants (including all never-smokers) will allow collection of lower airway samples for genetic, epigenetic, genomic, immunological, microbiome, mucin analyses, and basal cell culture. SOURCE should provide novel insights into the natural history of lung disease in younger individuals with a smoking history, and its biological basis.

3.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211135

RESUMEN

Circulating metabolite levels partly reflect the state of human health and diseases, and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally-diverse samples. We provided recommendations for outlier and imputation handling to process metabolite data, as well as a general analytical framework. We further performed a pooled analysis following our practical recommendations and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus - metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes, but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.

4.
Sci Adv ; 10(31): eadm8836, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083602

RESUMEN

In the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, epithelial populations in the distal lung expressing Angiotensin-converting enzyme 2 (ACE2) are infrequent, and therefore, the model of viral expansion and immune cell engagement remains incompletely understood. Using human lungs to investigate early host-viral pathogenesis, we found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations. Human alveolar macrophages (AMs) reliably expressed ACE2 allowing both spike-ACE2-dependent viral entry and infection. In contrast to Influenza A virus, SARS-CoV-2 infection of AMs was productive, amplifying viral titers. While AMs generated new viruses, the interferon responses to SARS-CoV-2 were muted, hiding the viral dissemination from specific antiviral immune responses. The reliable and veiled viral depot in myeloid cells in the very early phases of SARS-CoV-2 infection of human lungs enables viral expansion in the distal lung and potentially licenses subsequent immune pathologies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Pulmón , Macrófagos Alveolares , Células Mieloides , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Macrófagos Alveolares/virología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Células Mieloides/virología , Células Mieloides/metabolismo , Células Mieloides/inmunología , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Tropismo Viral
5.
Environ Res ; 259: 119512, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964581

RESUMEN

BACKGROUND: Valid, high-resolution estimates of population-level exposure to air pollutants are necessary for accurate estimation of the association between air pollution and the occurrence or exacerbation of adverse health outcomes such as Chronic Obstructive Pulmonary Disease (COPD). OBJECTIVES: We produced fine-scale individual-level estimates of ambient concentrations of multiple air pollutants (fine particulate matter [PM2.5], NOX, NO2, and O3) at residences of participants in the Subpopulations and Intermediate Outcomes in COPD Air Pollution (SPIROMICS Air) study, located in seven regions in the US. For PM2.5, we additionally integrated modeled estimates of particulate infiltration based on home characteristics and measured total indoor concentrations to provide comprehensive estimates of exposure levels. METHODS: To estimate ambient concentrations, we used a hierarchical high-resolution spatiotemporal model that integrates hundreds of geographic covariates and pollutant measurements from regulatory and study-specific monitors, including ones located at participant residences. We modeled infiltration efficiency based on data on house characteristics, home heating and cooling practices, indoor smoke and combustion sources, meteorological factors, and paired indoor-outdoor pollutant measurements, among other indicators. RESULTS: Cross-validated prediction accuracy (R2) for models of ambient concentrations was above 0.80 for most regions and pollutants. Particulate matter infiltration efficiency varied by region, from 0.51 in Winston-Salem to 0.72 in Los Angeles, and ambient-source particles constituted a substantial fraction of total indoor PM2.5. CONCLUSION: Leveraging well-validated fine-scale approaches for estimating outdoor, ambient-source indoor, and total indoor pollutant concentrations, we can provide comprehensive estimates of short and long-term exposure levels for cohorts undergoing follow-up in multiple different regions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Anciano , Persona de Mediana Edad , Masculino , Estados Unidos , Femenino , Exposición a Riesgos Ambientales/análisis , Estudios de Cohortes , Vivienda
6.
Artículo en Inglés | MEDLINE | ID: mdl-38935626

RESUMEN

BACKGROUND: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. OBJECTIVE: To study IL-13 induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. METHODS: Quantitative CT (qCT) lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 severe, 11 non-severe asthma and 18 healthy participants) in the Severe Asthma Research Program (SARPIII) and measured for mucin and cilia related proteins. Epithelial cells were differentiated in air-liquid interphase (ALI) with IL-13 +/-dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF) and epithelial integrity (transepithelial electrical resistance, TEER). RESULTS: Increased Muc5AC (Δ+263.2±92.7 lums/EpiArea) and decreased ciliated cells (Δ-0.07±0.03 Foxj1+cells/EpiArea) were observed in biopsies from severe asthma when compared to healthy (p<0.01 and p=0.047 respectively). RNAseq of epithelial cell brushes confirmed a Muc5AC increase with a decrease in a 5-gene cilia-related mean in severe asthma compared to healthy (all p<0.05). IL-13 (5 ng/mL) differentiated ALI cultures of healthy and asthmatic (severe and non-severe participants) increased Muc5AC, decreased cilia (α-acytl-tubulin) in healthy (Δ+6.5±1.5%, Δ-14.1±2.7%; all p<0.001 respectively) and asthma (Δ+4.4±2.5%, Δ-13.1±2.7%; p=0.084, p<0.001 respectively); decreased epithelial integrity (TEER) in healthy (-140.9±21.3 [ohms], p<0.001) while decreasing CBF in asthma (Δ-4.4±1.7 [Hz], p<0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC but there was restoration of cilia in healthy and asthma participants (absolute increase of 67.5% and 32.5% cilia, all p<0.05 respectively) while CBF increased (Δ+3.6±1.1 [Hz], p<0.001) and TEER decreased (only in asthma Δ-37.8±16.2 [ohms] p<0.05). CONCLUSIONS: IL-13 drives features of airway remodeling in severe asthma which are partially reversed by inhibiting IL-4Rα receptor in vitro.

7.
Nat Commun ; 15(1): 5483, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942804

RESUMEN

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. Here we perform bulk and single-cell RNA sequencing of samples from the lower respiratory tract and blood, and assess plasma cytokine profiling to study the effects of dexamethasone on both systemic and pulmonary immune cell compartments. In blood samples, dexamethasone is associated with decreased expression of genes associated with T cell activation, including TNFSFR4 and IL21R. We also identify decreased expression of several immune pathways, including major histocompatibility complex-II signaling, selectin P ligand signaling, and T cell recruitment by intercellular adhesion molecule and integrin activation, suggesting these are potential mechanisms of the therapeutic benefit of steroids in COVID-19. We identify additional compartment- and cell- specific differences in the effect of dexamethasone that are reproducible in publicly available datasets, including steroid-resistant interferon pathway expression in the respiratory tract, which may be additional therapeutic targets. In summary, we demonstrate compartment-specific effects of dexamethasone in critically ill COVID-19 patients, providing mechanistic insights with potential therapeutic relevance. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Citocinas , Dexametasona , Pulmón , SARS-CoV-2 , Dexametasona/uso terapéutico , Dexametasona/farmacología , Humanos , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/virología , Citocinas/metabolismo , Citocinas/sangre , Enfermedad Crítica , Masculino , Análisis de la Célula Individual , Femenino , Persona de Mediana Edad , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Anciano , Activación de Linfocitos/efectos de los fármacos
8.
JAMA Netw Open ; 7(6): e2417440, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38884994

RESUMEN

Importance: Persistent symptoms and disability following SARS-CoV-2 infection, known as post-COVID-19 condition or "long COVID," are frequently reported and pose a substantial personal and societal burden. Objective: To determine time to recovery following SARS-CoV-2 infection and identify factors associated with recovery by 90 days. Design, Setting, and Participants: For this prospective cohort study, standardized ascertainment of SARS-CoV-2 infection was conducted starting in April 1, 2020, across 14 ongoing National Institutes of Health-funded cohorts that have enrolled and followed participants since 1971. This report includes data collected through February 28, 2023, on adults aged 18 years or older with self-reported SARS-CoV-2 infection. Exposure: Preinfection health conditions and lifestyle factors assessed before and during the pandemic via prepandemic examinations and pandemic-era questionnaires. Main Outcomes and Measures: Probability of nonrecovery by 90 days and restricted mean recovery times were estimated using Kaplan-Meier curves, and Cox proportional hazards regression was performed to assess multivariable-adjusted associations with recovery by 90 days. Results: Of 4708 participants with self-reported SARS-CoV-2 infection (mean [SD] age, 61.3 [13.8] years; 2952 women [62.7%]), an estimated 22.5% (95% CI, 21.2%-23.7%) did not recover by 90 days post infection. Median (IQR) time to recovery was 20 (8-75) days. By 90 days post infection, there were significant differences in restricted mean recovery time according to sociodemographic, clinical, and lifestyle characteristics, particularly by acute infection severity (outpatient vs critical hospitalization, 32.9 days [95% CI, 31.9-33.9 days] vs 57.6 days [95% CI, 51.9-63.3 days]; log-rank P < .001). Recovery by 90 days post infection was associated with vaccination prior to infection (hazard ratio [HR], 1.30; 95% CI, 1.11-1.51) and infection during the sixth (Omicron variant) vs first wave (HR, 1.25; 95% CI, 1.06-1.49). These associations were mediated by reduced severity of acute infection (33.4% and 17.6%, respectively). Recovery was unfavorably associated with female sex (HR, 0.85; 95% CI, 0.79-0.92) and prepandemic clinical cardiovascular disease (HR, 0.84; 95% CI, 0.71-0.99). No significant multivariable-adjusted associations were observed for age, educational attainment, smoking history, obesity, diabetes, chronic kidney disease, asthma, chronic obstructive pulmonary disease, or elevated depressive symptoms. Results were similar for reinfections. Conclusions and Relevance: In this cohort study, more than 1 in 5 adults did not recover within 3 months of SARS-CoV-2 infection. Recovery within 3 months was less likely in women and those with preexisting cardiovascular disease and more likely in those with COVID-19 vaccination or infection during the Omicron variant wave.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Adulto , Síndrome Post Agudo de COVID-19 , Pandemias , Estados Unidos/epidemiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-38935874

RESUMEN

Rationale Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objective By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods We performed a genome-wide association study (GWAS) of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate GWAS and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n=1,278) and adults from the UK Biobank (n=369,157). Measurements and Main Results CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP, DSP, and NPNT as potential molecular targets based on colocalization of their expression. Higher dysanapsis genetic risk score was associated with obstructive spirometry among 5 year old children and among adults in the 5th, 6th and 7th decades of life. Conclusions CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endo-phenotype link between the genetic variations associated with lung function and COPD.

11.
JCI Insight ; 9(15)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889046

RESUMEN

Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that IL-13-activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibited viscoelastic liquid behavior and that mucus secreted by IL-13-activated HAECs exhibited solid-like behavior caused by mucin cross-linking. In addition, IL-13-activated HAECs shows increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that was prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), was increased in IL-13-activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings was increased in patients with asthma with high airway mucus plug scores. Together, our results show that IL-13-activated HAECs autonomously generated pathologic mucus via peroxidase-mediated cross-linking of mucin polymers.


Asunto(s)
Células Epiteliales , Interleucina-13 , Moco , Humanos , Interleucina-13/metabolismo , Interleucina-13/farmacología , Células Epiteliales/metabolismo , Moco/metabolismo , Mucinas/metabolismo , Asma/metabolismo , Asma/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Lactoperoxidasa/metabolismo , Geles
12.
Artículo en Inglés | MEDLINE | ID: mdl-38843116

RESUMEN

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

13.
Eur Respir J ; 64(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697650

RESUMEN

Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.


Asunto(s)
Antiasmáticos , Asma , Humanos , Asma/genética , Asma/tratamiento farmacológico , Antiasmáticos/uso terapéutico , Fenotipo , Transducción de Señal , Índice de Severidad de la Enfermedad , Interleucina-17/metabolismo , Inflamasomas/metabolismo , Interferones/metabolismo , Inflamación
14.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L796-L804, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651338

RESUMEN

Secreted deoxyribonucleases (DNases), such as DNase-I and DNase-IL3, degrade extracellular DNA, and endogenous DNases have roles in resolving airway inflammation and guarding against autoimmune responses to nucleotides. Subsets of patients with asthma have high airway DNA levels, but information about DNase activity in health and in asthma is lacking. To characterize DNase activity in health and in asthma, we developed a novel kinetic assay using a Taqman probe sequence that is quickly cleaved by DNase-I to produce a large product signal. We used this kinetic assay to measure DNase activity in sputum from participants in the Severe Asthma Research Program (SARP)-3 (n = 439) and from healthy controls (n = 89). We found that DNase activity was lower than normal in asthma [78.7 relative fluorescence units (RFU)/min vs. 120.4 RFU/min, P < 0.0001]. Compared to patients with asthma with sputum DNase activity in the upper tertile activity levels, those in the lower tertile of sputum DNase activity were characterized clinically by more severe disease and pathologically by airway eosinophilia and airway mucus plugging. Carbamylation of DNase-I, a post-translational modification that can be mediated by eosinophil peroxidase, inactivated DNase-I. In summary, a Taqman probe-based DNase activity assay uncovers low DNase activity in the asthma airway that is associated with more severe disease and airway mucus plugging and may be caused, at least in part, by eosinophil-mediated carbamylation.NEW & NOTEWORTHY We developed a new DNase assay and used it to show that DNase activity is impaired in asthma airways.


Asunto(s)
Asma , Desoxirribonucleasa I , Esputo , Humanos , Asma/metabolismo , Asma/enzimología , Femenino , Masculino , Esputo/metabolismo , Esputo/enzimología , Adulto , Persona de Mediana Edad , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasas/metabolismo
15.
J Allergy Clin Immunol ; 154(3): 580-591.e6, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38663815

RESUMEN

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: We sought to determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during 3 years of observation in 480 participants in the Severe Asthma Research Program 3. RESULTS: Over 3 years, EPX levels in patients with asthma were higher than normal in 27% to 31% of serum samples and 36% to 53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts less than 150 cells/µL and 42% of participants with blood eosinophil counts between 150 and 299 cells/µL. Patients with persistently high sputum EPX values for 3 years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 patients with asthma who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSIONS: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.


Asunto(s)
Asma , Biomarcadores , Peroxidasa del Eosinófilo , Eosinófilos , Esputo , Humanos , Asma/sangre , Asma/diagnóstico , Asma/inmunología , Asma/tratamiento farmacológico , Peroxidasa del Eosinófilo/metabolismo , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Esputo/inmunología , Eosinófilos/inmunología , Recuento de Leucocitos , Inflamación , Anciano , Anticuerpos Monoclonales Humanizados
16.
Ann Am Thorac Soc ; 21(9): 1251-1260, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38568439

RESUMEN

Rationale: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). Objectives: To determine whether air pollution increases the prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation areas (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. Methods: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. Ten-year exposure to particulate matter ⩽2.5 µm in aerodynamic diameter (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone before enrollment CT (completed between 2010 and 2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk (RR) of ILA or increased percent HAA (between -600 and -250 Hounsfield units), respectively. We assessed for effect modification by MUC5B-promoter polymorphism (variant allele carriers GT or TT vs. GG at rs3705950), smoking status, sex, and percent emphysema. Results: Among 1,272 participants with COPD assessed for HAA, 424 were current smokers, and 249 were carriers of the variant MUC5B allele. A total of 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (P value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (P value interaction term for NOx = 0.05; NO2 = 0.01; and ozone = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had an increased risk of ILA (RR per 26 ppb NOx, 2.41; 95% confidence interval [CI], 0.97-6.0; and RR per 4 µg ⋅ m-3 PM2.5, 1.43; 95% CI, 0.93-2.2, respectively). With higher exposure to NO2, former smokers had an increased risk of ILA (RR per 10 ppb, 1.64; 95% CI, 1.0-2.7). Conclusions: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.


Asunto(s)
Contaminación del Aire , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Anciano , Persona de Mediana Edad , Estudios Transversales , Material Particulado/efectos adversos , Contaminación del Aire/efectos adversos , Mucina 5B/genética , Enfermedades Pulmonares Intersticiales/epidemiología , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Exposición a Riesgos Ambientales/efectos adversos , Estados Unidos/epidemiología , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Óxidos de Nitrógeno/efectos adversos , Óxidos de Nitrógeno/análisis , Modelos Lineales , Fumar/efectos adversos , Fumar/epidemiología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Ozono/efectos adversos , Prevalencia
17.
Artículo en Inglés | MEDLINE | ID: mdl-38507607

RESUMEN

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

18.
Ann Am Thorac Soc ; 21(7): 1022-1033, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530051

RESUMEN

Rationale: Rates of emphysema progression vary in chronic obstructive pulmonary disease (COPD), and the relationships with vascular and airway pathophysiology remain unclear. Objectives: We sought to determine if indices of peripheral (segmental and beyond) pulmonary arterial dilation measured on computed tomography (CT) are associated with a 1-year index of emphysema (EI; percentage of voxels <-950 Hounsfield units) progression. Methods: Five hundred ninety-nine former and never-smokers (Global Initiative for Chronic Obstructive Lung Disease stages 0-3) were evaluated from the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort: rapid emphysema progressors (RPs; n = 188, 1-year ΔEI > 1%), nonprogressors (n = 301, 1-year ΔEI ± 0.5%), and never-smokers (n = 110). Segmental pulmonary arterial cross-sectional areas were standardized to associated airway luminal areas (segmental pulmonary artery-to-airway ratio [PAARseg]). Full-inspiratory CT scan-derived total (arteries and veins) pulmonary vascular volume (TPVV) was compared with small vessel volume (radius smaller than 0.75 mm). Ratios of airway to lung volume (an index of dysanapsis and COPD risk) were compared with ratios of TPVV to lung volume. Results: Compared with nonprogressors, RPs exhibited significantly larger PAARseg (0.73 ± 0.29 vs. 0.67 ± 0.23; P = 0.001), lower ratios of TPVV to lung volume (3.21 ± 0.42% vs. 3.48 ± 0.38%; P = 5.0 × 10-12), lower ratios of airway to lung volume (0.031 ± 0.003 vs. 0.034 ± 0.004; P = 6.1 × 10-13), and larger ratios of small vessel volume to TPVV (37.91 ± 4.26% vs. 35.53 ± 4.89%; P = 1.9 × 10-7). In adjusted analyses, an increment of 1 standard deviation in PAARseg was associated with a 98.4% higher rate of severe exacerbations (95% confidence interval, 29-206%; P = 0.002) and 79.3% higher odds of being in the RP group (95% confidence interval, 24-157%; P = 0.001). At 2-year follow-up, the CT-defined RP group demonstrated a significant decline in postbronchodilator percentage predicted forced expiratory volume in 1 second. Conclusions: Rapid one-year progression of emphysema was associated with indices indicative of higher peripheral pulmonary vascular resistance and a possible role played by pulmonary vascular-airway dysanapsis.


Asunto(s)
Progresión de la Enfermedad , Arteria Pulmonar , Enfisema Pulmonar , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/fisiopatología , Anciano , Persona de Mediana Edad , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Volumen Espiratorio Forzado , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen
19.
Am J Respir Crit Care Med ; 210(2): 186-200, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38261629

RESUMEN

Rationale: The airway microbiome has the potential to shape chronic obstructive pulmonary disease (COPD) pathogenesis, but its relationship to outcomes in milder disease is unestablished. Objectives: To identify sputum microbiome characteristics associated with markers of COPD in participants of the Subpopulations and Intermediate Outcome Measures of COPD Study (SPIROMICS). Methods: Sputum DNA from 877 participants was analyzed using 16S ribosomal RNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic, and mucoinflammatory markers, including longitudinal lung function trajectory, were examined. Measurements and Main Results: Participant data represented predominantly milder disease (Global Initiative for Chronic Obstructive Lung Disease stage 0-2 obstruction in 732 of 877 participants). Phylogenetic diversity (i.e., range of different species within a sample) correlated positively with baseline lung function, decreased with higher Global Initiative for Chronic Obstructive Lung Disease stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (P < 0.001). In covariate-adjusted regression models, organisms robustly associated with better lung function included Alloprevotella, Oribacterium, and Veillonella species. Conversely, lower lung function, greater symptoms, and radiographic measures of small airway disease were associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features were also associated with lung function trajectory during SPIROMICS follow-up (stable/improved, decline, or rapid decline groups). The stable/improved group (slope of FEV1 regression ⩾66th percentile) had greater bacterial diversity at baseline associated with enrichment in Prevotella, Leptotrichia, and Neisseria species. In contrast, the rapid decline group (FEV1 slope ⩽33rd percentile) had significantly lower baseline diversity associated with enrichment in Streptococcus species. Conclusions: In SPIROMICS, baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Esputo , Humanos , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Masculino , Femenino , Esputo/microbiología , Persona de Mediana Edad , Anciano , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Biomarcadores
20.
Chronic Obstr Pulm Dis ; 11(1): 26-36, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37931592

RESUMEN

Rationale: The SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS) is a prospective cohort study that enrolled 2981 participants with the goal of identifying new chronic obstructive pulmonary disease (COPD) subgroups and intermediate markers of disease progression. Individuals with COPD and obstructive sleep apnea (OSA) experience impaired quality of life and more frequent exacerbations. COPD severity also associates with computed tomography scan-based emphysema and alterations in airway dimensions. Objectives: The objective was to determine whether the combination of lung function and structure influences the risk of OSA among current and former smokers. Methods: Using 2 OSA risk scores, the Berlin Sleep Questionnaire (BSQ), and the DOISNORE50 (Diseases, Observed apnea, Insomnia, Snoring, Neck circumference > 18 inches, Obesity with body mass index [BMI] > 32, R = are you male, Excessive daytime sleepiness, 50 = age ≥ 50) (DIS), 1767 current and former smokers were evaluated for an association of lung structure and function with OSA risk. Measurements and Main Results: The study cohort's mean age was 63 years, BMI was 28 kg/m2, and forced expiratory volume in 1 second (FEV1) was 74.8% predicted. The majority were male (55%), White (77%), former smokers (59%), and had COPD (63%). A high-risk OSA score was reported in 36% and 61% using DIS and BSQ respectively. There was a 9% increased odds of a high-risk DIS score (odds ratio [OR]=1.09, 95% confidence interval [CI]:1.03-1.14) and nominally increased odds of a high-risk BSQ score for every 10% decrease in FEV1 %predicted (OR=1.04, 95%CI: 0.998-1.09). Lung function-OSA risk associations persisted after additionally adjusting for lung structure measurements (%emphysema, %air trapping, parametric response mapping for functional small airways disease, , mean segmental wall area, tracheal %wall area, dysanapsis) for DIS (OR=1.12, 95%CI:1.03-1.22) and BSQ (OR=1.09, 95%CI:1.01-1.18). Conclusions: Lower lung function independently associates with having high risk for OSA in current and former smokers. Lung structural elements, especially dysanapsis, functional small airways disease, and tracheal %wall area strengthened the effects on OSA risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA