Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 138: 102682, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39244225

RESUMEN

Cyanobacteria harmful algal blooms (cHABs) are increasing in frequency, intensity and duration in estuaries worldwide. In the upper San Francisco Estuary, also known as the Sacramento San Joaquin Delta (Delta), cHABs have been a topic of concern over the past two decades. In response, managers are urgently working to understand the factors that drive cHABs and identify feasible management options to avert ecological and human health consequences. We used a six year data set to explore relationships between flow parameters, temperature, and Microcystis biovolume to determine the potential for managing large scale hydrodynamic conditions to address Delta cHABs. We also looked at the relationship between Microcystis biovolume and the low salinity zone to see if it could be used as a proxy for residence time, because residence time is positively related to cyanobacteria abundance. We found the low salinity zone is not a useful proxy for residence time in the area of the Delta that experiences the most severe cHABs. Our finding suggest that climatic conditions (i.e., temperature and water year type) have the greatest influence on Microcystis biovolume in the Delta, with higher biovolume during years with lower flow and higher temperatures. Further, there are interannual differences in Microcystis biovolume that cannot be fully explained by flow parameters or temperature, meaning other factors not included in our model may be involved. We conclude that management actions to increase flow may be ineffective at reducing Microcystis to desired levels if water temperatures remain high.


Asunto(s)
Estuarios , Floraciones de Algas Nocivas , Microcystis , Microcystis/fisiología , Microcystis/crecimiento & desarrollo , Temperatura , San Francisco , Salinidad
2.
Sci Total Environ ; 946: 174250, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936722

RESUMEN

Harmful cyanobacteria blooms are a growing threat in estuarine waters as upstream blooms are exported into coastal environments. Cyanobacteria can produce potent toxins, one of which-hepatotoxic microcystins (MCs)-can persist and accumulate within the food web. Filter-feeding invertebrates may biomagnify toxins up to 100× ambient concentrations. As such, bivalves can be used as an environmentally relevant and highly sensitive sentinel for MC monitoring. To date there has been little research on cyanotoxin bioaccumulation in estuaries. The Sacramento-San Joaquin Delta (Delta) aquatic food web has undergone a profound change in response to widespread colonization of aquatic invasive species such as Asian clams (Corbicula fluminea) in the freshwater portion of the Delta. These clams are prolific-blanketing areas of the Delta at densities up to 1000 clams/m2 and are directly implicated in the pelagic organism decline of threatened and endangered fishes. We hypothesized that Asian clams accumulate MCs which may act as an additional stressor to the food web and MCs would seasonally be in exceedance of public health advisory levels. MCs accumulation in Delta Asian clams and signal crayfish (Pacifastacus leniusculus) were studied over a two-year period. ELISA and LC-MS analytical methods were used to measure free and protein-bound MCs in clam and crayfish tissues. We describe an improved MC extraction method for use when analyzing these taxa by LC-MS. MCs were found to accumulate in Asian clams across all months and at all study sites, with seasonal maxima occurring during the summer. Although MC concentrations rarely exceeded public health advisory levels, the persistence of MCs year-round still poses a chronic risk to consumers. Crayfish at times also accumulated high concentrations of MCs. Our results highlight the utility of shellfish as sentinel organisms for monitoring in estuarine areas.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Microcistinas , Microcistinas/análisis , Animales , California , Estuarios , Astacoidea , Contaminantes Químicos del Agua/análisis , Bivalvos/metabolismo , Corbicula
3.
Mar Pollut Bull ; 205: 116585, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878417

RESUMEN

Cyanobacteria harmful algal blooms (CHABs) are a growing water quality problem in the upper San Francisco Estuary (California), also known as the Sacramento-San Joaquin Delta. We conducted cyanobacteria and cyanotoxin monitoring from 2020 to 2023, which spanned California's driest consecutive 3-year period and one of the wettest years on record (2023). To assess the impact of CHABs over this range of hydrologic conditions, we monitored invasive Asian Clams (Corbicula fluminea) for microcystin contamination and used molecular tools (qPCR and sequencing) to characterize cyanobacteria in the water column. We also used solid phase adsorption toxin tracking (SPATT) samplers to track microcystins (MCs) and other cyanotoxins in 2023. During the drought years, record breaking MCs, in excess of 1000 µg/L, were documented in water grab samples and Asian clams also accumulated higher MCs relative to the wet year. However, MCs were present in Asian clams during the entire study period. SPATT's confirmed MC presence during wet 2023 and sequencing results corroborated the integrative sampler findings. Yet, no MC was detected in water grab samples at our primary sampling sites during the drought year of 2022 or the wet year of 2023. This highlights the importance of using multiple sampling modalities to provide a more accurate assessment of MC contamination, especially in large estuaries where traditional discrete monitoring can easily miss episodic and transient CHAB events.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Microcistinas , Monitoreo del Ambiente/métodos , Microcistinas/análisis , Animales , Toxinas Marinas , Estuarios , Corbicula , Hidrología , California , Toxinas Bacterianas/análisis
4.
J Environ Manage ; 351: 119606, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081090

RESUMEN

Cyanobacterial harmful algal blooms (CHABs) have become a persistent seasonal problem in the upper San Francisco Estuary, California also known as the Sacramento-San Joaquin Delta (Delta). The Delta is comprised of a complex network of open water bodies, channels, and sloughs. The terminus of the Stockton Channel is an area identified as a CHAB "hotspot." As CHABs increase in severity, there is an urgent need to better understand CHAB drivers to identify and implement mitigation measures that can be used in an estuarine complex like the Delta. We investigated water quality conditions and nutrient dynamics in the Stockton Channel by measuring nutrients in the water column, sediments, and pore waters. In situ nutrient addition bioassay experiments were used to assess the effects of nutrient enrichment on total algal/cyanobacterial growth and pigment concentrations. In both June and September, relative to unamended controls, total chlorophyll and cyanobacterial pigment concentrations were unaffected by nutrient additions; hence, the study area showed signs of classical hypereutrophication, with ambient nitrogen and phosphorus present in excess of algal growth requirements. A cyanobacterial bloom, dominated by Microcystis spp. was present throughout the study area but was most severe and persistent at the shallowest site at the channel terminus. At this site, Microcystis spp. created water quality conditions that allowed for a prolonged bloom from June through September. While targeted nutrient reductions are recommended for long term mitigation, on a shorter timescale, our findings suggest that physical/mechanical controls are the more promising alternative approaches to reduce the severity of CHABs in the terminus of the Stockton Channel.


Asunto(s)
Cianobacterias , Microcystis , Floraciones de Algas Nocivas , Calidad del Agua , California , Lagos/microbiología , Eutrofización
5.
Chemosphere ; 272: 129581, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33482515

RESUMEN

Midlatitude waterbodies are experiencing increased cyanobacteria blooms that necessitate health advisories to protect waterbody users. Although surface waters may contain cyanotoxins such as microcystin (MC), at concentrations that pose potential public health risks, little is known about MC contamination of shoreline sediments. Based on growing evidence that lake and reservoir sediments can accumulate MCs, we hypothesized that shoreline sediments (i.e., recreational beaches) may accumulate MCs and thereby pose a potential health risk to recreational users even if people stay out of contaminated water. We sampled nearshore surface water, shoreline sediment, and porewater from seven Washington State, USA, lakes/reservoirs recreational beaches to determine MC presence/absence during or immediately following cyanobacteria blooms. We found MCs in shoreline sediments at all waterbodies using ELISA and LC-MS/MS. MC concentrations in shoreline sediments and porewaters persisted for 20 days following dissipation of cyanobacteria blooms when MC concentrations were near analytical reporting limits in corresponding surface waters. A human health risk assessment based on potential MC exposure through incidental ingestion of porewaters and sediments found, even when very high MC concentrations occur in surface waters (i.e., >11,000 µg/L), estimated ingestion doses are below MC World Health Organization tolerable daily intake and U.S. Environmental Protection Agency's risk reference dose. While our findings suggest MCs in Washington State recreational beaches in 2018 did not present a significant human health risk, future blooms with higher MC concentrations could pose human health risks via the shoreline sediment/porewater exposure pathway.


Asunto(s)
Lagos , Microcistinas , Cromatografía Liquida , Humanos , Microcistinas/análisis , Prevalencia , Espectrometría de Masas en Tándem , Washingtón
6.
Environ Monit Assess ; 187(2): 12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25619698

RESUMEN

Ingestion of water contaminated with the cyanotoxin, microcystin (MC), can pose serious health risks to humans. MC is also known to accumulate in seafood; however, this exposure pathway is much less understood. A fundamental element of this uncertainty is related to analytical difficulties. Commercially available enzyme-linked immunosorbent assays (ELISAs) offer one of the best options for routine MC detection, but methods of detecting MC in tissue are far from standardized. We spiked freshwater finfish and marine mussel tissues with MC, then compared recovery rates using four different preparation protocols and two ELISA types (polyclonal anti-MC-ADDA/direct monoclonal (DM)). Preparation protocol, type of ELISA, and seafood tissue variety significantly affected MC detection. This is the first known study to use DM ELISA for tissue analyses, and our findings demonstrate that DM ELISA combined with a short solvent extraction results in fewer false positives than other commonly used methods. This method can be used for rapid and reliable MC detection in seafood.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Análisis de los Alimentos/métodos , Microcistinas/análisis , Alimentos Marinos/análisis , Contaminantes del Agua/análisis , Animales , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA