Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118492, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37384989

RESUMEN

Persistent organic pollutants (POPs) are chemicals which have been persisting in the environment for many years due to their longer half-lives. POPs have gained attention over the last few decades due to the unsustainable management of chemicals which led to their widespread and massive contamination of biota from different strata and environments. Due to the widespread distribution, bio-accumulation and toxic behavior, POPs have become a risk for organisms and environment. Therefore, a focus is required to eliminate these chemicals from the environment or transform into non-toxic forms. Among the available techniques for the removal of POPs, most of them are inefficient or incur high operational costs. As an alternative to this, microbial bioremediation of POPs such as pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals and personal care products is much more efficient and cost-effective. Additionally, bacteria play a vital role in the biotransformation and solubilization of POPs, which reduces their toxicity. This review specifies the Stockholm Convention that evaluates the risk profile for the management of existing as well as emerging POPs. The sources, types and persistence of POPs along with the comparison of conventional elimination and bioremediation methods of POPs are discussed comprehensively. This study demonstrates the existing bioremediation techniques of POPs and summaries the potential of microbes which serve as enhanced, cost-effective, and eco-friendly approach for POPs elimination.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Bifenilos Policlorados , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados/análisis , Contaminantes Ambientales/análisis , Biota , Monitoreo del Ambiente/métodos , Plaguicidas/análisis
2.
Nat Commun ; 11(1): 613, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001690

RESUMEN

Osmoregulation is important for plant growth, development and response to environmental changes. SNF1-related protein kinase 2s (SnRK2s) are quickly activated by osmotic stress and are central components in osmotic stress and abscisic acid (ABA) signaling pathways; however, the upstream components required for SnRK2 activation and early osmotic stress signaling are still unknown. Here, we report a critical role for B2, B3 and B4 subfamilies of Raf-like kinases (RAFs) in early osmotic stress as well as ABA signaling in Arabidopsis thaliana. B2, B3 and B4 RAFs are quickly activated by osmotic stress and are required for phosphorylation and activation of SnRK2s. Analyses of high-order mutants of RAFs reveal critical roles of the RAFs in osmotic stress tolerance and ABA responses as well as in growth and development. Our findings uncover a kinase cascade mediating osmoregulation in higher plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Presión Osmótica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Estrés Fisiológico , Quinasas raf/metabolismo , Análisis Mutacional de ADN , Mutación/genética , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica
3.
Plant Physiol ; 174(1): 258-275, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28270625

RESUMEN

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coproporfirinógeno Oxidasa/metabolismo , Células Germinativas de las Plantas/metabolismo , Mitocondrias/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Coproporfirinógeno Oxidasa/genética , Coproporfirinógenos/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/crecimiento & desarrollo , Mitocondrias/metabolismo , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
4.
Gene ; 524(1): 22-7, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23612249

RESUMEN

Investigation of the transgenic Arabidopsis promoter trap line GFP-868 that showed GFP expression only in anthers revealed the T-DNA insertion at 461bp upstream to the hypothetical gene At4g10596 with the GFP reporter gene in head-to-head orientation to the At4g10596 gene. The expression of the At4g10596 gene in wild type and in GFP-868 plant homozygous for T-DNA insertion was comparable and found in all tissues tested, while the GFP expression was restricted to anthers of the GFP-868 plants suggesting that the 461bp fragment separating the two genes in the GFP-868 line is functioning as bi-directional promoter. This 461bp fragment was cloned upstream to the GUS gene in two orientations to test for bi-directional promoter activity. Transgenic Arabidopsis plants carrying either of these constructs showed GUS activity in anthers indicating that this fragment behaves as bi-directional promoter specific to anthers. These results were also supported by the presence of cis-acting motifs such as TATA box and POLLEN1LELAT52 (AGAAA) within the 461bp sequence in both orientations. However, transcripts corresponding to the upstream sequences beyond -461 nucleotides were not detected in the wild type suggesting that this 461bp fragment is a cryptic promoter. The significance of the promoter trap approach and the usefulness of this type of promoter are discussed.


Asunto(s)
Arabidopsis/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Secuencia de Bases , Clonación Molecular , Flores/genética , Genes de Plantas , Genes Reporteros , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Homocigoto , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , TATA Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA