Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(15): 6448-6457, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37022968

RESUMEN

Here, we described a cheap and effective chemosensor (NHPyTSC) that can distinguish Hg2+ and Zn2+ ions from other metal ions and evaluated this phenomenon using several spectroscopy techniques. With the addition of mercury and zinc ions, the proposed chemosensor in particular showed noticeable changes in color and absorption spectra. Additionally, by including EDTA in the NHPyTSC-Hg2+ and NHPyTSC-Zn2+ solutions, colorimetry readings can be reversed. We developed a molecular-scale sequential information processing circuit and presented the "writing-reading-erasing-reading" and "multiwrite" behaviors in the form of binary logic based on the great reversibility of this process. Moreover, by sequentially adding Hg2+, Zn2+, and EDTA, NHPyTSC imitates a molecular keypad lock and molecular logic gates. Density functional theory (DFT) investigations provided more evidence of the Hg2+ and Zn2+ ions' ability to attach to NHPyTSC. The most interesting part of this work is that a study on the latent fingerprint detection of the powder compound revealed that NHPyTSC exhibits good adherence and finger ridge features without background stains. When compared to black and white fingerprint powders, it is discovered that the NHPyTSC powder produces results that are remarkably clear on the majority of surfaces. This demonstrated their potential for real-world use, particularly in the area of criminal investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA