Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Reprod ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37119395

RESUMEN

KEY MESSAGE: The Cyperaceae fruit consistency depends on the mesocarp. Seed structure is diverse and related to the evolutionary history of their species. A new storage tissue is described for Cyperaceae. Anatomy and histochemistry of Cyperaceae fruits (including seeds) are poorly known due to their hard, isolating tissues that prevent anatomical techniques. We performed the first, most comprehensive structural diversity characterisation of fruit and seed in Cyperaceae, accompanied by an unprecedented histochemical characterisation of seeds for this family. We analysed fruits of 29 species, included in 19 genera and 12 tribes within the subfamilies Cyperoideae and Mapanioideae, using light microscopy. Cyperaceae fruits have a pericarp with a one-cell-layered exocarp and endocarp, and a multi-cell-layered mesocarp. The mesocarp of the Mapanioideae has a spongy-fleshy outer region and a hard inner region. The mesocarp of the Cyperoideae has only a hard region. The pericarp is free from the seed coat. Cyperaceae seeds have a three-layered seed coat, an embryo with haustorial function of its scutellum, and two storage tissues: the endosperm and a putative perisperm. Nine seed morphotypes and four seed subtypes were observed among the studied species. Our results suggested that the fruit consistency is determined by the mesocarp. Both the terms "nut" and "achene" should be accepted to refer to the dry fruit of the Cyperaceae until a widely accepted fruit classification for angiosperms is proposed. The Cyperaceae seed structural diversity is high and related to the evolutionary history of the species. The "perisperm" is a new tissue proposed for sedge seeds, and is here characterized for the first time. The seed coat has a different structure than the one described so far for the family.

2.
Evodevo ; 13(1): 7, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172885

RESUMEN

BACKGROUND: Plant dispersal units, or diaspores, allow the colonization of new environments expanding geographic range and promoting gene flow. Two broad categories of diaspores found in seed plants are dry and fleshy, associated with abiotic and biotic dispersal agents, respectively. Anatomy and developmental genetics of fleshy angiosperm fruits is advanced in contrast to the knowledge gap for analogous fleshy structures in gymnosperm diaspores. Improved understanding of the structural basis of modified accessory organs that aid in seed dispersal will enable future work on the underlying genetics, contributing to hypotheses on the origin of angiosperm fruits. To generate a structural framework for the development and evolution of gymnosperm fleshy diaspores, we studied the anatomy and histochemistry of Ephedra (Gnetales) seed cone bracts, the modified leaves surrounding the reproductive organs. We took an ontogenetic approach, comparing and contrasting the anatomy and histology of fleshy and papery-winged seed cone bracts, and their respective pollen cone bracts and leaves in four species from the South American clade. RESULTS: Seed bract fleshiness in Ephedra derives from mucilage accumulated in chlorenchyma cells, also found in the reduced young leaves before they reach their mature, dry stage. Cellulosic fibers, an infrequent cell type in gymnosperms, were found in Ephedra, where they presumably function as a source of supplementary apoplastic water in fleshy seed cone bracts. Papery-winged bract development more closely resembles that of leaves, with chlorenchyma mucilage cells turning into tanniniferous cells early on, and hyaline margins further extending into "wings". CONCLUSIONS: We propose an evolutionary developmental model whereby fleshy and papery-winged bracts develop from an early-stage anatomy shared with leaves that differs at the pollination stage. The ancestral fleshy bract state may represent a novel differentiation program built upon young leaf anatomy, while the derived dry, papery-winged state is likely built upon an existing differentiation pattern found in mature vegetative leaves. This model for the evolution of cone bract morphology in South American Ephedra hence involves a novel differentiation program repurposed from leaves combined with changes in the timing of leaf differentiation, or heterochrony, that can further be tested in other gymnosperms with fleshy diaspores.

3.
Mol Phylogenet Evol ; 130: 211-226, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336217

RESUMEN

The Calyceraceae (47 spp.) is a small family of plants that is sister to the Asteraceae (∼ 25,000 spp.), one of the largest families of angiosperms. Most members of Calyceraceae are endemic to the Andes and Patagonia, representing an excellent model within which to study diversification patterns in these regions. The single phylogenetic study of Calyceraceae conducted to date revealed that the boundaries of most genera and several species of this family require further analyses, especially the "Nastanthus-Gamocarpha" clade. In this study, we reconstructed the phylogeny of the "Nastanthus-Gamocarpha" clade using multispecies coalescent models under BPP and StarBeast2 programs, sampling 63 individuals from 13 of the 14 species recognized to date. We then used this phylogenetic framework to delimit species using BFD and the A11 method implemented in BPP. Species limits suggested through a coalescent approach were then re-evaluated in the light of morphology, geography, and phenology. Coalescent-based methods indicated that most putative lineages could be recognized as distinct species. Morphological, geographical, ecological, and phenological data further supported species delimitation. Necessary taxonomic changes are proposed. Namely, the paraphyletic Nastanthus is synonymized under Gamocarpha, while five species of Boopis are transferred into Gamocarpha. We used an integrative taxonomic approach to recognize 13 species and one subspecies within the newly circumscribed genus Gamocarpha.


Asunto(s)
Clasificación , Magnoliopsida/química , Modelos Teóricos , Filogenia , Geografía , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA