Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38470790

RESUMEN

The thermodynamic and kinetic simulations based on the re-assessment of the thermodynamic and kinetic database of the Ni-Ti-Cu system were employed to predict the phenomena of mechanical alloying, spark plasma sintering and thermal properties of the intriguing Ni-Ti-Cu system. Thermodynamic calculations are presented for the stable and unstable phases of NiTiCu materials and support a correlation with the evolving microstructure during the technological process. Also, the thermal conductivity, the thermal diffusivity and the specific heat of spark plasma sintered and aged Cu-alloyed NiTi-based shape memory alloys (NiTiCu) with two compositions, Ni45Ti50Cu5 and Ni40Ti50Cu10, are evaluated and the influence of mechanical alloying and precipitates on thermal properties is discussed. Measurements of these thermal properties were carried out from 25 °C up to 175 °C using the laser flash method, as well as differential scanning calorimetry. The thermal hysteresis of the 20 mm diameter samples was between 8.8 and 24.5 °C. The observed T0 temperatures from DSC experimental transformation features are in reasonable accordance with the thermodynamic predictions. The determined k values are between 20.04 and 26.87 W/m K and in agreement with the literature results. Moreover, this paper can provide some suggestions for the preparation of NiTiCu shape memory alloys and their applications.

2.
Materials (Basel) ; 15(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36234165

RESUMEN

Microalloyed steels offer a good combination of desirable mechanical properties by fine-tuning grain growth and recrystallization dynamics while keeping the carbon content low for good weldability. In this work, the dislocation density evolution during hot rolling was correlated by materials modeling with flow curves. Single-hit compression tests at different temperatures and strain rates were performed with varying isothermal holding times prior to deformation to achieve different precipitation stages. On the basis of these experimental results, the dislocation density evolution was evaluated using a recently developed semi-empirical state-parameter model implemented in the software MatCalc. The yield stress at the beginning of the deformation σ0, the initial strain hardening rate θ0, and the saturation stress σ∞-as derived from the experimental flow curves and corresponding Kocks plots-were used for the calibration of the model. The applicability for industrial processing of many microalloyed steels was assured by calibration of the model parameters as a function of temperature and strain rate. As a result, it turned out that a single set of empirical equations was sufficient to model all investigated microalloyed steels since the plastic stresses at high temperatures did not depend on the precipitation state.

3.
Materials (Basel) ; 14(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801933

RESUMEN

A thermokinetic computational framework for precipitate transformation simulations in Ta-containing martensitic Z-steels was developed, including Calphad thermodynamics, diffusion mobility data from the literature, and a kinetic parameter setup that considered precipitation sites, interfacial energies and dislocation density evolution. The thermodynamics of Ta-containing subsystems were assessed by atomic solubility data and enthalpies from the literature as well as from the experimental dissolution temperature of Ta-based Z-phase CrTaN obtained from differential scanning calorimetry. Accompanied by a comprehensive transmission electron microscopy analysis of the microstructure, thermokinetic precipitation simulations with a wide-ranging and well-documented set of input parameters were carried out in MatCalc for one sample alloy. A special focus was placed on modelling the transformation of MX into the Z-phase, which was driven by Cr diffusion. The simulation results showed excellent agreement with experimental data in regard to size, number density and chemical composition of the precipitates, showing the usability of the developed thermokinetic simulation framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA