Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Phys Chem B ; 116(35): 10551-60, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22578334

RESUMEN

DNA origami is a promising tool for use as a template in the design and fabrication of nanoscale structures. The ability to engineer selected staple strands on a DNA origami structure provides a high density of addressable locations across the structure. Here we report a method using site-specific attachment of gold nanoparticles to modified staple strands and subsequent metallization to fabricate conductive wires from DNA origami templates. We have modified DNA origami structures by lengthening each staple strand in select regions with a 10-base nucleotide sequence and have attached DNA-modified gold nanoparticles to the lengthened staple strands via complementary base-pairing. The high density of extended staple strands allowed the gold nanoparticles to pack tightly in the modified regions of the DNA origami, where the measured median gap size between neighboring particles was 4.1 nm. Gold metallization processes were optimized so that the attached gold nanoparticles grew until gaps between particles were filled and uniform continuous nanowires were formed. Finally, electron beam lithography was used to pattern electrodes in order to measure the electrical conductivity of metallized DNA origami, which showed an average resistance of 2.4 kΩ per metallized structure.


Asunto(s)
ADN/química , Nanocables/química , Conductividad Eléctrica , Oro/química , Nanopartículas del Metal/química , Microscopía de Fuerza Atómica
2.
Nano Lett ; 11(5): 1981-7, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21473607

RESUMEN

We have used block copolymer patterned arrays of 5 nm gold nanoparticles (AuNPs) for chemically aligned surface attachment of DNA origami. Addition of single-stranded DNA-thiol to AuNPs allowed a base paired attachment of sticky end modified DNA origami. Results indicate a stable, selective attachment between the DNA origami and ssDNA modified AuNPs. Yield data showed 74% of AuNP binding sites forming an attachment with a DNA origami rectangle, and control surfaces showed less than 0.5% nonspecific adsorption.


Asunto(s)
ADN/química , Oro/química , Nanopartículas del Metal/química , Nanotecnología/métodos , Polímeros/química , Adsorción , Sitios de Unión , ADN de Cadena Simple/química , Micelas , Modelos Químicos , Modelos Estadísticos , Nanopartículas/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
3.
ACS Nano ; 5(3): 2240-7, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21323323

RESUMEN

This work examines the metallization of folded DNA, known as DNA origami, as an enabling step toward the use of such DNA as templates for nanoelectronic circuits. DNA origami, a simple and robust method for creating a wide variety of shapes and patterns, makes possible the increased complexity and flexibility needed for both the design and assembly of useful circuit templates. In addition, selective metallization of the DNA template is essential for circuit fabrication. Metallization of DNA origami presents several challenges over and above those associated with the metallization of other DNA templates such as λ-DNA. These challenges include (1) the stability of the origami in the processes used for metallization, (2) the enhanced selectivity required to metallize small origami structures, (3) the increased difficulty of adhering small structures to the surface so that they will not be removed when subject to multiple metallization steps, and (4) the influence of excess staple strands present with the origami. This paper describes our efforts to understand and address these challenges. Specifically, the influence of experimental conditions on template stability and on the selectivity of metal deposition was investigated for small DNA origami templates. These templates were seeded with Ag and then plated with Au via an electroless deposition process. Both staple strand concentration and the concentration of ions in solution were found to have a significant impact. Selective continuous metal deposition was achieved, with an average metallized height as small as 32 nm. The shape of branched origami was also retained after metallization. These results represent important progress toward the realization of DNA-templated nanocircuits.


Asunto(s)
ADN/química , Electrónica/instrumentación , Metales/química , Nanoestructuras/química , Nanotecnología/instrumentación , ADN/ultraestructura , Diseño de Equipo , Análisis de Falla de Equipo , Nanoestructuras/ultraestructura , Tamaño de la Partícula
4.
Nano Lett ; 9(12): 4302-5, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19995086

RESUMEN

Designs for DNA origami have previously been limited by the size of the available single-stranded genomes for scaffolds. Here we present a straightforward method for the production of scaffold strands having various lengths, using polymerase chain reaction amplification followed by strand separation via streptavidin-coated magnetic beads. We have applied this approach in assembling several distinct DNA nanostructures that have thin ( approximately 10 nm) features and branching points, making them potentially useful templates for nanowires in complex electronic circuitry.


Asunto(s)
Cristalización/métodos , ADN/química , ADN/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Reacción en Cadena de la Polimerasa/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA