Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273885

RESUMEN

A fungicide's ingredients can play a physiological role in crop water-management decisions. Our greenhouse study in 2021 demonstrated that Xyway LFR@FMC at-plant fungicide can significantly improve water-saving potential in corn. In 2022 and 2023, a field study was conducted to validate this finding. The 1.11 L ha-1 of Xyway LFR@FMC and no-fungicide/check were the main plot effects. Three water regimes, high (HI) and low (LO) numbers of irrigation events and rainfed (RF), were the subplot effect. Plants treated with Xyway LFR@FMC had significantly higher plant height, stem diameter, and leaf water potential (LWP), and had 11.9, 13.4, and 18.3% higher yield under RF, LO, and HI, respectively, in 2022. In 2023, there were no significant differences for the yield components and growth parameters when the combined effect of fungicide treatments and water regimes was considered. However, plants treated with the fungicide had a higher number of rows per ear, kernel number per row, and cob diameter compared to the check. There was no significant separation for yield among the water regimes in 2023, but the crop yield was overall higher for the fungicide-treated plots. Our results indicate that Xyway LFR@FMC fungicide has the potential to improve plant growth and protect the yield when limited water is applied.

2.
Plants (Basel) ; 12(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765391

RESUMEN

Drought conditions exhibit various physiological and morphological changes in crops and thus reduce crop growth and yield. In order to mitigate the negative impacts of drought stress on soybean (Glycine max L. Merr.) production, identification and selection of genotypes that are best adapted to limited water availability in a specific environmental condition can be an effective strategy. This study aimed to assess the inheritance of early stomatal closure traits in soybeans using a population of recombinant inbred lines (RILs) derived from a cross between N09-13890 and Ellis. Thirty soybean lines were subjected to progressive water-deficit stress using a dry-down experiment. The experiment was conducted from June to November 2022 at the West Tennessee Research and Education Center (WTREC), University of Tennessee in Jackson, TN, under controlled environment conditions. This study identified significant differences among soybean lines in their early stomatal closure thresholds. The fraction of transpirable soil water (FTSW) thresholds among 30 tested lines ranged from 0.18 to 0.80, at which the decline in transpiration with soil drying was observed. Almost 65% of the RILs had FTSW threshold values between 0.41 to 0.80. These results, indicating inheritance, are supportive of the expression of early stomatal closure trait in progeny lines at a high level in cultivar development for water-deficit stress conditions. Thus, identifying the differences in genotypes of water use and their response to water-deficit stress conditions can provide a foundation for selecting new cultivars that are best adapted to arid and semi-arid agricultural production systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA