Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1444568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149118

RESUMEN

The Food and Drug Administration's (FDA) obesity drug guidance is set on the basis of body mass index (BMI), with thresholds of either BMI ≥30 or BMI ≥27 kg/m2 with weight-related comorbidities. While BMI is associated with obesity-related health outcomes, there are known limitations to use as a direct measure of body fat or metabolic health, and the American Medical Association has highlighted limitations of BMI in assessing individual obesity risks. BMI thresholds impose a barrier to treatment. In a sample from the NHANES dataset (n=6,646 men and women), 36% of individuals with metabolic syndrome (MetS) may not be eligible for obesity pharmacotherapy. This analysis provides quantifiable justification for refinement of the BMI treatment criteria with a more holistic assessment of individual obesity-related disease risk.


Asunto(s)
Índice de Masa Corporal , Síndrome Metabólico , Obesidad , Humanos , Masculino , Femenino , Encuestas Nutricionales , Adulto , Persona de Mediana Edad
2.
Front Physiol ; 15: 1406749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957215

RESUMEN

Few US Marines earn perfect 300 scores on both their Physical Fitness Test (PFT) and Combat Fitness Test (CFT). The number 300 invokes the legendary 300 Spartans that fought at the Battle of Thermopylae, which inspired high physical fitness capabilities for elite ground forces ever since. Purpose: Determine distinguishing characteristics of the "300 Marines" (perfect PFT and CFT scores) that may provide insights into the physical and physiological requirements associated with this capability. These tests have been refined over time to reflect physical capabilities associated with Marine Corps basic rifleman performance. Materials and methods: Data were analyzed from US Marines, including 497 women (age, 29 ± 7 years; height 1.63 ± 0.07 m; body mass, 67.4 ± 8.4 kg) and 1,224 men (30 ± 8 years; 1.77 ± 0.07 m; 86.1 ± 11.1 kg). Marines were grouped by whether they earned perfect 300 scores on both the PFT and CFT (300 Marines) or not. We analyzed group differences in individual fitness test events and body composition (dual-energy x-ray absorptiometry). Results: Only 2.5% (n = 43) of this sample earned perfect PFT and CFT scores (n = 21 women; n = 22 men). Compared to sex-matched peers, 300 Marines performed more pull-ups, with faster three-mile run, maneuver-under-fire, and movement-to-contact times (each p < 0.001); 300 Marines of both sexes had lower fat mass, body mass index, and percent body fat (each p < 0.001). The lower percent body fat was explained by greater lean mass (p = 0.041) but similar body mass (p = 0.085) in women, whereas men had similar lean mass (p = 0.618), but lower total body mass (p = 0.025). Conclusion: Marines earning perfect PFT and CFT scores are most distinguished from their peers by their maneuverability, suggesting speed and agility capabilities. While both sexes had considerably lower percent body fat than their peers, 300 Marine women were relatively more muscular while men were lighter.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38747476

RESUMEN

OBJECTIVE: Thresholds for overweight and obesity are currently defined by body mass index (BMI), a poor surrogate marker of actual adiposity (percent body fat, %BF). Practical modern technologies provide estimates of %BF but medical providers need outcome-based %BF thresholds to guide patients. This analysis determines %BF thresholds based on key obesity-related comorbidities, exhibited as metabolic syndrome (MetSyn). These limits were compared to existing BMI thresholds of overweight and obesity. DESIGN: Correlational analysis of data from cross sectional sampling of 16,918 adults (8,734 men and 8,184 women) from the US population, accessed by the National Health and Nutrition Examination Survey (NHANES) public use datasets. RESULTS: Individuals measured by BMI as overweight (BMI>25 kg/m2) and with obesity (BMI>30 kg/m2) included 5% and 35% of individuals with MetSyn, respectively. For men, there were no cases of MetSyn below 18%BF, %BF equivalence to "overweight" (i.e., 5% of MetSyn individuals) occurred at 25%BF, and "obesity" (i.e., 35% of MetSyn individuals) corresponded to 30%BF. For women, there were no cases of MetSyn below 30%BF, "overweight" occurred at 36%BF, and "obesity" corresponded to 42%BF. Comparison of BMI to %BF illustrates the wide range of variability in BMI prediction of %BF, highlighting the potential importance of using more direct measures of adiposity to manage obesity-related disease. CONCLUSIONS: Practical methods of body composition estimation can now replace the indirect BMI assessment for obesity management, using threshold values provided from this study. Clinically relevant "overweight" can be defined as 25 and 36% BF for men and women, respectively, and "obesity" is defined as 30 and 42% BF for men and women.

4.
Med Sci Sports Exerc ; 56(6): 1177-1185, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38291646

RESUMEN

INTRODUCTION: The US Army Load Carriage Decision Aid (LCDA) metabolic model is used by militaries across the globe and is intended to predict physiological responses, specifically metabolic costs, in a wide range of dismounted warfighter operations. However, the LCDA has yet to be adapted for vest-borne load carriage, which is commonplace in tactical populations, and differs in energetic costs to backpacking and other forms of load carriage. PURPOSE: The purpose of this study is to develop and validate a metabolic model term that accurately estimates the effect of weighted vest loads on standing and walking metabolic rate for military mission-planning and general applications. METHODS: Twenty healthy, physically active military-age adults (4 women, 16 men; age, 26 ± 8 yr old; height, 1.74 ± 0.09 m; body mass, 81 ± 16 kg) walked for 6 to 21 min with four levels of weighted vest loading (0 to 66% body mass) at up to 11 treadmill speeds (0.45 to 1.97 m·s -1 ). Using indirect calorimetry measurements, we derived a new model term for estimating metabolic rate when carrying vest-borne loads. Model estimates were evaluated internally by k -fold cross-validation and externally against 12 reference datasets (264 total participants). We tested if the 90% confidence interval of the mean paired difference was within equivalence limits equal to 10% of the measured walking metabolic rate. Estimation accuracy, precision, and level of agreement were also evaluated by the bias, standard deviation of paired differences, and concordance correlation coefficient (CCC), respectively. RESULTS: Metabolic rate estimates using the new weighted vest term were statistically equivalent ( P < 0.01) to measured values in the current study (bias, -0.01 ± 0.54 W·kg -1 ; CCC, 0.973) as well as from the 12 reference datasets (bias, -0.16 ± 0.59 W·kg -1 ; CCC, 0.963). CONCLUSIONS: The updated LCDA metabolic model calculates accurate predictions of metabolic rate when carrying heavy backpack and vest-borne loads. Tactical populations and recreational athletes that train with weighted vests can confidently use the simplified LCDA metabolic calculator provided as Supplemental Digital Content to estimate metabolic rates for work/rest guidance, training periodization, and nutritional interventions.


Asunto(s)
Metabolismo Energético , Personal Militar , Caminata , Soporte de Peso , Humanos , Femenino , Masculino , Adulto , Caminata/fisiología , Metabolismo Energético/fisiología , Adulto Joven , Soporte de Peso/fisiología , Calorimetría Indirecta , Prueba de Esfuerzo
5.
Am J Hum Biol ; 36(1): e23984, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37695262

RESUMEN

OBJECTIVE: Determine if relative body fat (%BF) remains a biological norm in physically active, non-obese American men and women and determine reference values for other components of body composition. METHODS: Participants (n = 174 men, 70 women) were physically fit U.S. Marine 2nd Lieutenants, in their third decade of physical maturity (age 21-30). Body composition was assessed by dual-energy x-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA); and body images were obtained by 3D body scans. RESULTS: For men and women, respectively, %BF averaged 16.2 ± 4.1 (median 15.3), 24.3 ± 4.5 (median 23.8); fat-free mass (FFM): 67.7 ± 7.2, 49.4 ± 5.3 kg; FFM index: 21.5 ± 1.8, 18.3 ± 1.6 kg/m2 ; and body mass index (BMI): 25.5 ± 1.9, 24.1 ± 2.2 kg/m2 . Bone mineral content (BMC) was 5% of FFM; total body water (TBW) was 70%-72% of FFM. Physique remained similar between median and higher percentiles of %BF. Only small changes in key measures were noted across the six-month training program. CONCLUSIONS: Mean %BF of healthy active men and women in 2021 remains very similar to the 15% and 25% posited in 1980, suggesting that relative body fat has a normal fat-lean relationship in physically mature humans. These data may bring new attention to sex-appropriate %BF.


Asunto(s)
Tejido Adiposo , Composición Corporal , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Impedancia Eléctrica , Tejido Adiposo/metabolismo , Índice de Masa Corporal , Absorciometría de Fotón/métodos
6.
J Appl Physiol (1985) ; 135(1): 60-67, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199784

RESUMEN

Global climate change has resulted in an increase in the number and intensity of environmental heat waves, both in areas traditionally associated with hot temperatures and in areas where heat waves did not previously occur. For military communities around the world, these changes pose progressively increasing risks of heat-related illnesses and interference with training sessions. This is a significant and persistent "noncombat threat" to both training and operational activities of military personnel. In addition to these important health and safety concerns, there are broader implications in terms of the ability of worldwide security forces to effectively do their job (particularly in areas that historically already have high ambient temperatures). In the present review, we attempt to quantify the impact of climate change on various aspects of military training and performance. We also summarize ongoing research efforts designed to minimize and/or prevent heat injuries and illness. In terms of future approaches, we propose the need to "think outside the box" for a more effective training/schedule paradigm. One approach may be to investigate potential impacts of a reversal of sleep-wake cycles during basic training during the hot months of the year, to minimize the usual increase in heat-related injuries, and to enhance the capacity for physical training and combat performance. Regardless of which approaches are taken, a central feature of successful present and future interventions will be that they are rigorously tested using integrative physiological approaches.


Asunto(s)
Trastornos de Estrés por Calor , Personal Militar , Humanos , Calentamiento Global , Calor , Cambio Climático , Ejercicio Físico , Trastornos de Estrés por Calor/prevención & control
7.
J Therm Biol ; 113: 103477, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055108

RESUMEN

INTRODUCTION: this study describes the development of a female finite element thermoregulatory model (FETM) METHOD: the female body model was developed from medical image datasets of a median U.S. female and was constructed to be anatomically correct. The body model preserves the geometric shapes of 13 organs and tissues, including skin, muscles, fat, bones, heart, lungs, brain, bladder, intestines, stomach, kidneys, liver, and eyes. Heat balance within the body is described by the bio-heat transfer equation. Heat exchange at the skin surface includes conduction, convection, radiation, and sweat evaporation. Vasodilation, vasoconstriction, sweating, and shivering are controlled by afferent and efferent signals to and from the skin and hypothalamus. RESULTS: the model was validated with measured physiological data during exercise and rest in thermoneutral, hot, and cold conditions. Validations show the model predicted the core temperature (rectal and tympanic temperatures) and mean skin temperatures with acceptable accuracy (within 0.5 °C and 1.6 °C, respectively) CONCLUSION: this female FETM predicted high spatial resolution temperature distribution across the female body, which provides quantitative insights into human thermoregulatory responses in females to non-uniform and transient environmental exposure.


Asunto(s)
Regulación de la Temperatura Corporal , Sudoración , Femenino , Humanos , Análisis de Elementos Finitos , Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Temperatura Cutánea , Fiebre , Calor
8.
Int J Circumpolar Health ; 82(1): 2194504, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989120

RESUMEN

Biomathematical models quantitatively describe human physiological responses to environmental and operational stressors and have been used for planning and real-time prevention of cold injury. These same models can be applied from a military tactical perspective to gain valuable insights into the health status of opponent soldiers. This paper describes a use case for predicting physiological status of Russian soldiers invading Ukraine using open-source information. In March 2022, media outlets reported Russian soldiers in a stalled convoy invading Ukraine were at serious risk of hypothermia and predicted these soldiers would be "freezing to death" within days because of declining temperatures (down to -20°C). Using existing Army models, clothing data and open-source intelligence, modelling and analyses were conducted within hours to quantitatively assess the conditions and provide science-based predictions. These predictions projected a significant increase in risks of frostbite for exposed skin and toes and feet, with a very low (negligible) risk of hypothermia. Several days later, media outlets confirmed these predictions, reporting a steep rise in evacuations for foot frostbite injuries in these Russian forces. This demonstrated what can be done today with the existing mathematical physiology and how models traditionally focused on health risk can be used for tactical intelligence.


Asunto(s)
Congelación de Extremidades , Hipotermia , Personal Militar , Humanos , Frío , Congelación , Ucrania
9.
Appl Ergon ; 109: 103985, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36764233

RESUMEN

INTRODUCTION: Physiological limits imposed by vest-borne loads must be defined for optimal performance monitoring of the modern dismounted warfighter. PURPOSE: To evaluate how weighted vests affect locomotion economy and relative cardiometabolic strain during military load carriage while identifying key physiological predictors of exhaustion limits. METHODS: Fifteen US Army soldiers (4 women, 11 men; age, 26 ± 8 years; height, 173 ± 10 cm; body mass (BM), 79 ± 16 kg) performed four incremental walking tests with different vest loads (0, 22, 44, or 66% BM). We examined the effects of vest-borne loading on peak walking speed, the physiological costs of transport, and relative work intensity. We then sought to determine which of the cardiometabolic indicators (oxygen uptake, heart rate, respiration rate) was most predictive of task failure. RESULTS: Peak walking speed significantly decreased with successively heavier vest loads (p < 0.01). Physiological costs per kilometer walked were significantly higher with added vest loads for each measure (p < 0.05). Relative oxygen uptake and heart rate were significantly higher during the loaded trials than the 0% BM trial (p < 0.01) yet not different from one another (p > 0.07). Conversely, respiration rate was significantly higher with the heavier load in every comparison (p < 0.01). Probability modeling revealed heart rate as the best predictor of task failure (marginal R2, 0.587, conditional R2, 0.791). CONCLUSION: Heavy vest-borne loads cause exceptional losses in performance capabilities and increased physiological strain during walking. Heart rate provides a useful non-invasive indicator of relative intensity and task failure during military load carriage.


Asunto(s)
Enfermedades Cardiovasculares , Personal Militar , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Consumo de Oxígeno/fisiología , Fatiga Muscular , Caminata/fisiología , Oxígeno , Soporte de Peso/fisiología
10.
Am J Hum Biol ; 35(2): e23823, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285812

RESUMEN

OBJECTIVES: To improve predictive formulae for estimating body surface area (BSA) in healthy men and women using a modern three-dimensional scanner technology. METHODS: Body surface areas were obtained from a convenience sample of 1267 US Marines (464 women and 803 men) using a whole body surface scanner (Size Stream SS20). The reliability of SS20 measures of total and regional BSA within participants was compared across triplicate scans. We then derived a series of formulae to estimate SS20-measured BSA using various combinations of sex, height, and mass. We also assessed relationships between percent body fat measured by dual-energy x-ray absorptiometry and sex-specific formulae errors in Marines. RESULTS: Body surface areas recorded by the SS20 were highly reliable whether measured for the total body or by region (ICC ≥ .962). Formulae estimates of BSA from sex, height, and mass were precise (root-mean-square deviation, 0.031 m2 ). Errors from the Marine Corps formulae were positively associated with percent body fat for men (p = .001) but not women (p = .843). CONCLUSIONS: Clinicians, military leaders, and researchers can use the newly developed BSA formulae for precise estimates in healthy physically active men and women. Users should be aware that height- and mass-based BSA estimates are less accurate for individuals with extremely low or high percent body fat.


Asunto(s)
Tejido Adiposo , Modelos Biológicos , Masculino , Femenino , Humanos , Superficie Corporal , Reproducibilidad de los Resultados , Composición Corporal , Absorciometría de Fotón
11.
Mil Med ; 188(9-10): 3071-3078, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35822881

RESUMEN

INTRODUCTION: It is unclear whether immersion heat acclimation benefits exercise in warm water conditions. This study examined the effects of heat acclimation strategies on heart rate (HR), core temperature, and time to exhaustion (TTE) during cycling exercise in varying warm water conditions. METHODS: Twenty male divers completed this study at the Navy Experimental Diving Unit. Subjects were randomly assigned to one of two 9-day heat acclimation groups. The first group (WARM; n = 10) cycled for 2 hours at 50 W in 34.4 °C water, while the second group (HOT; n = 10) cycled for 1 hour against minimal resistance in 36.7 °C water. Following acclimation, TTE was tested by underwater cycling (30 W) in 35.8 °C, 37.2 °C, and 38.6 °C water. RESULTS: Throughout acclimation, the rate of core temperature rise in the first 30 minutes of exercise increased (P = .02), but the maximum core temperature reached was not different for either group. Time to exhaustion (TTE) was reduced, and the rate of core temperature rise during performance testing increased (both P < .001) with increasing water temperature but was not different between groups. Core temperature and HR increased throughout performance testing in each water condition and were lower in the HOT compared to the WARM acclimation group (all P < .05) with the exception of core temperature in the 37.2 °C condition. CONCLUSIONS: Underwater exercise performance did not differ between the two acclimation strategies. This study suggests that passive acclimation to a higher water temperature may improve thermoregulatory and cardiovascular responses to exercise in warm water. Hot water immersion adaptations are dependent on exercise intensity and water temperature.


Asunto(s)
Aclimatación , Regulación de la Temperatura Corporal , Humanos , Masculino , Regulación de la Temperatura Corporal/fisiología , Aclimatación/fisiología , Ejercicio Físico/fisiología , Adaptación Fisiológica , Calor , Fiebre , Agua , Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología
12.
BMJ Nutr Prev Health ; 6(2): 234-242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38618530

RESUMEN

Women's roles in the US military have progressively changed over the past several decades. Previously women were barred from combat roles. Recent change in policy allow women into combat roles in the Marine Corps, and this has led to women being trained for combat specialties. Objectives: This observational cross-sectional study describes body composition and performance values for modern Marine Corps women. Methods: Volunteers were 736 Marine women who were assessed for body composition and physical performance; (age 29.5±7.3 (18-56) years; height 163.6±6.8 (131.0-186.1) cm; body mass 68.3±9.2 (42.0-105.3) kg; years in the military 8.9±6.8 (0.5-37) years-in-service). Body composition measures were obtained using dual-energy X-ray absorptiometry and single-frequency bioelectrical impedance analyses. Performance measures were obtained from official physical and combat fitness test scores (PFT; CFT) as well as from data on measured countermovement jumps (CMJ) on a calibrated force platform. Results: Mean body composition metrics for Marine women were: 47.5±5.7 fat free mass (FFM) (kg), 30.1%±6.4% body fat (%BF), 2.6±0.3 bone mineral content (kg), and 25.5±2.8 body mass index (kg/m2); performance metrics included 43.4±3.2 maximal oxygen uptake (VO2max; mL.kg.min), 22.4±7.1 CMJ height (cm) and 2575±565.2 CMJ peak power (W). Data showed strong correlations (r) (≥0.70) between PFT and VO2max scores (0.75), and moderate correlations (≥0.50) between CFT and VO2max scores (0.57), CFT and PFT scores (0.60), FFM and CMJ peak power (W) (0.68), and %BF to VO2max (-0.52), PFT (-0.54), CMJ-Ht (-0.52) and CMJ relative power (W/kg) (-0.54). Conclusion: Modern Marine women are both lean and physically high performing. Body composition is a poor predictor of general physical performance.

13.
BMJ Mil Health ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323456

RESUMEN

BACKGROUND: The creation of highly muscled and strong fighters is a recurring theme in human performance enhancement concepts. Physical readiness standards, intended to prevent obesity in the military, produce contradictory objectives, hounding large individuals to lose weight because of confusion between body size and body composition. Through selection, specialised training and policy exceptions the US Marine Corps has successfully developed a unique group of large (body mass index (BMI) >30 kg/m2) and strong individuals, the body bearers (BB) who carry coffins of Marines to their final resting place. METHODS: We examined the relationship between adiposity and body size from nine male BB (age 25.0±2.1, height: 1.84±0.04 (1.80-1.92) m, BMI: 33.0±2.1 (30-37) kg/m2). Body composition was assessed by dual-energy X-ray absorptiometry (DXA), bioelectrical impedance (BIA) and tape measured abdominal circumference (AC)-based equations and from three-dimensional scanning (3DS). RESULTS: Measures were made of fat-free mass (FFM): 90.5±7.0 (82.0-106.7) kg, where FFM included total body water: 62.8±5.0 (55.8-71.8) L, representing 69±2 (67-73) % of FFM, along with calculated FFM index: 26.8±2.4 (24.4-32.9) kg/m2). DXA measures were made for bone mineral content 4.1±0.4 (3.5-4.9) kg, bone mineral density (BMD) 1.56±0.10 (1.37-1.76) g/cm2 and %BF 19.5±6.6 (9.0-27.8). Additional measures of percent body fat (%BF) were made by AC: 20.3±2.9 (15.2-24.6), BIA: 23.7±6.4 (9.8-29.2) and 3DS: 25.5±4.7 (18.9-32.2). AC %BF reasonably matched DXA %BF, with expected overprediction and underprediction at low and high DXA %BF. BIA %BF was affected by deviations from assumed FFM hydration (72%-73%). CONCLUSION: These men are classified as obese by BMI but carried massive amounts of muscle and bone on their large frames, while presenting a range of %BF irrelevant to strength performance. BMI did not predict obesity and adiposity had no association with muscle mass and strength performance.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35805626

RESUMEN

Heat stress in many industrial workplaces imposes significant risk of injury to individuals. As a means of quantifying these risks, a comparison of four rationally developed thermoregulatory models was conducted. The health-risk prediction (HRP) model, the human thermal regulation model (HuTheReg), the SCENARIO model, and the six-cylinder thermoregulatory model (SCTM) each used the same inputs for an individual, clothing, activity rates, and environment based on previously observed conditions within the Portuguese glass industry. An analysis of model correlations was conducted for predicted temperatures (°C) of brain (TBrain), skin (TSkin), core body (TCore), as well as sweat evaporation rate (ER; Watts). Close agreement was observed between each model (0.81-0.98). Predicted mean ± SD of active phases of exposure for both moderate (TBrain 37.8 ± 0.25, TSkin 36.7 ± 0.49, TCore 37.8 ± 0.45 °C, and ER 207.7 ± 60.4 W) and extreme heat (TBrain 39.1 ± 0.58, TSkin, 38.6 ± 0.71, TCore 38.7 ± 0.65 °C, and ER 468.2 ± 80.2 W) were assessed. This analysis quantifies these heat-risk conditions and provides a platform for comparison of methods to more fully predict heat stress during exposures to hot environments.


Asunto(s)
Regulación de la Temperatura Corporal , Trastornos de Estrés por Calor , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/fisiología , Respuesta al Choque Térmico , Calor , Humanos , Temperatura Cutánea
15.
Undersea Hyperb Med ; 49(2): 197-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35580487

RESUMEN

Purpose: Diving in warm water increases thermal risk during exercise compared to thermoneutral waters. The purpose of this study was to evaluate exercise endurance in warm- and hot-water conditions in divers habituated to wet or dry heat. Methods: Nineteen male divers completed this study at the Navy Experimental Diving Unit. Subjects were assigned DRY or WET heat habituation groups. The DRY group (n=9) cycled at 125-150W for one hour in a non-immersed condition (34.4˚C, 50%RH), while the WET group (n=10) cycled at 50W for one hour while immersed in 34.4˚C water. Exercise time to exhaustion was tested on an underwater cycle ergometer in 35.8˚C (WARM) and 37.2˚C (HOT) water at 50W. Core temperature (Tc) was continuously recorded and for all dives. Results: Time to exhaustion was reduced in HOT compared to WARM water (p ≺0.01) in both DRY (92.7 ± 41.6 minutes in 35.8°C vs. 43.4 ± 17.5 minutes in 37.2°C) and WET (95.9 ± 39.2 minutes in 35.8°C vs. 53.4 ± 27.5 minutes in 37.2°C) groups, but did not differ between groups (p=0.62). Rate of Tc rise was greater with higher water temperature (p ≺0.01), but was not different between groups (p=0.68). Maximum Tc (p=0.94 and p=0.95) and Tc change from baseline (p=0.38 and p=0.34) was not different between water temperatures or habituation group, respectively. Conclusion: Endurance decreased with increased water temperature but was not different between WET and DRY. Divers became exhausted at a similar core temperature during WARM- and HOT-water exercise. Mechanisms and applications of heat acclimation for warm-water diving should be further explored.


Asunto(s)
Buceo , Inmersión , Temperatura Corporal , Buceo/efectos adversos , Ejercicio Físico , Calor , Humanos , Masculino , Agua
16.
Front Physiol ; 13: 868627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432005

RESUMEN

Purpose: Body composition assessment methods are dependent on their underlying principles, and assumptions of each method may be affected by age and sex. This study compared an abdominal circumference-focused method of percent body fat estimation (AC %BF) to a criterion method of dual-energy x-ray absorptiometry (DXA), and a comparative assessment with bioelectrical impedance (BIA), in younger (≤30 years) and older (>age 30 years) physically fit (meeting/exceeding annual US Marine Corps fitness testing requirements) men and women. Methods: Fit healthy US Marines (430 men, 179 women; 18-57 years) were assessed for body composition by DXA (iDXA, GE Lunar), anthropometry, and BIA (Quantum IV, RJL Systems). Results: Compared to DXA %BF, male AC %BF underestimated for both ≤30 and >30 years age groups (bias, -2.6 ± 3.7 and -2.5 ± 3.7%); while female AC %BF overestimated for both ≤30 and >30 years age groups (2.3 ± 4.3 and 1.3 ± 4.8%). On an individual basis, lean men and women were overestimated and higher %BF individuals were underestimated. Predictions from BIA were more accurate and reflected less relationship to adiposity for each age and sex group (males: ≤30, 0.4 ± 3.2, >30 years, -0.5 ± 3.5; women: ≤30, 1.4 ± 3.1, >30 years, 0.0 ± 3.3). Total body water (hydration) and bone mineral content (BMC) as a proportion of fat-free mass (FFM) remained consistent across the age range; however, women had a higher proportion of %BMC/FFM than men. Older men and women (>age 30 years) were larger and carried more fat but had similar FFM compared to younger men and women. Conclusion: The AC %BF provides a field expedient method for the US Marine Corps to classify individuals for obesity prevention, but does not provide research-grade quantitative body composition data.

18.
Hum Factors ; 64(8): 1306-1316, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-33861157

RESUMEN

OBJECTIVE: The aim of this study was to model the effect of body armor coverage on body core temperature elevation and wet-bulb globe temperature (WBGT) offset. BACKGROUND: Heat stress is a critical factor influencing the health and safety of military populations. Work duration limits can be imposed to mitigate the risk of exertional heat illness and are derived based on the environmental conditions (WBGT). Traditionally a 3°C offset to WBGT is recommended when wearing body armor; however, modern body armor systems provide a range of coverage options, which may influence thermal strain imposed on the wearer. METHOD: The biophysical properties of four military clothing ensembles of increasing ballistic protection coverage were measured on a heated sweating manikin in accordance with standard international criteria. Body core temperature elevation during light, moderate, and heavy work was modeled in environmental conditions from 16°C to 34°C WBGT using the heat strain decision aid. RESULTS: Increasing ballistic protection resulted in shorter work durations to reach a critical core temperature limit of 38.5°C. Environmental conditions, armor coverage, and work intensity had a significant influence on WBGT offset. CONCLUSION: Contrary to the traditional recommendation, the required WBGT offset was >3°C in temperate conditions (<27°C WBGT), particularly for moderate and heavy work. In contrast, a lower WBGT offset could be applied during light work and moderate work in low levels of coverage. APPLICATION: Correct WBGT offsets are important for enabling adequate risk management strategies for mitigating risks of exertional heat illness.


Asunto(s)
Trastornos de Estrés por Calor , Personal Militar , Humanos , Temperatura , Calor , Trastornos de Estrés por Calor/prevención & control , Respuesta al Choque Térmico
19.
BMJ Nutr Prev Health ; 5(2): 254-262, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619314

RESUMEN

Bioelectrical impedance analysis (BIA) provides a practical method of body composition estimation for field research and weight management programmes, with devices and algorithms that have improved in recent years. We compared suitability of a commercial BIA system that uses multi-frequency-based proprietary algorithms (InBody 770, Cerritos, California, USA) and a laboratory-based validated single-frequency system (Quantum IV, RJL Systems, Clinton Township, Michigan, USA) with dual-energy X-ray absorptiometry (DXA) (iDXA, GE Lunar, Madison, Wisconsin, USA). Volunteers included fit non-obese active duty US Marines (480 men; 315 women), assessed by DXA and the two BIA systems. Both RJL and InBody BIA devices predicted DXA-based fat-free mass (FFM) (mean absolute error (MAE) 2.8 and 3.1 kg, respectively) and per cent body fat (%BF) (MAE 3.4% and 3.9%, respectively), with higher correlations from the InBody device (r2=0.96 (%BF) and 0.84 (FFM)) versus the RJL (r2=0.92 (%BF) and 0.72 (FFM)). InBody overpredicted FFM (bias +2.7, MAE 3.1 kg) and underpredicted %BF (bias -3.4 and MAE 3.9%) versus the RJL. A 3% correction factor applied to the InBody device results provided values very close to the DXA measurements. These findings support the application of modern BIA systems to body composition goals of maximum %BF and minimum lean body mass for both men and women.

20.
J Strength Cond Res ; 36(4): 1053-1058, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265816

RESUMEN

ABSTRACT: Figueiredo, PS, Looney, DP, Pryor, JL, Doughty, EM, McClung, HL, Vangala, SV, Santee, WR, Beidleman, BA, and Potter, AW. Verification of maximal oxygen uptake in active military personnel during treadmill running. J Strength Cond Res 36(4): 1053-1058, 2022-It is unclear whether verification tests are required to confirm "true" maximal oxygen uptake (V̇o2max) in modern warfighter populations. Our study investigated the prevalence of V̇o2max attainment in U.S. Army soldiers performing a traditional incremental running test. In addition, we examined the utility of supramaximal verification testing as well as repeated trials for familiarization for accurate V̇o2max assessment. Sixteen U.S. Army soldiers (1 woman, 15 men; age, 21 ± 2 years; height, 1.73 ± 0.06 m; body mass, 71.6 ± 10.1 kg) completed 2 laboratory visits, each with an incremental running test (modified Astrand protocol) and a verification test (110% maximal incremental test speed) on a motorized treadmill. We evaluated V̇o2max attainment during incremental testing by testing for the definitive V̇O2 plateau using a linear least-squares regression approach. Peak oxygen uptake (V̇o2peak) was considered statistically equivalent between tests if the 90% confidence interval around the mean difference was within ±2.1 ml·kg-1·min-1. Oxygen uptake plateaus were identified in 14 of 16 volunteers for visit 1 (87.5%) and all 16 volunteers for visit 2 (100%). Peak oxygen uptake was not statistically equivalent, apparent from the mean difference in V̇o2peak measures between the incremental test and verification test on visit 1 (2.3 ml·kg-1·min-1, [1.3-3.2]) or visit 2 (1.1 ml·kg-1·min-1 [0.2-2.1]). Interestingly, V̇o2peak was equivalent, apparent from the mean difference in V̇o2peak measures between visits for the incremental tests (0.0 ml·kg-1·min-1 [-0.8 to 0.9]) but not the verification tests (-1.2 ml·kg-1·min-1 [-2.2 to -0.2]). Modern U.S. Army soldiers can attain V̇o2max by performing a modified Astrand treadmill running test. Additional familiarization and verification tests for confirming V̇o2max in healthy active military personnel may be unnecessary.


Asunto(s)
Personal Militar , Carrera , Adulto , Prueba de Esfuerzo/métodos , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Oxígeno , Consumo de Oxígeno , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA