RESUMEN
For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness.
Asunto(s)
Insecticidas , Malaria , Humanos , Primaquina/efectos adversos , Administración Masiva de Medicamentos , Estudios Transversales , Haití/epidemiología , Estudios de Factibilidad , Control de Mosquitos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & controlRESUMEN
The national deployment of polyvalent community health workers (CHWs) is a constitutive part of the strategy initiated by the Ministry of Health to accelerate efforts towards universal health coverage in Haiti. Its implementation requires the planning of future recruitment and deployment activities for which mathematical modelling tools can provide useful support by exploring optimised placement scenarios based on access to care and population distribution. We combined existing gridded estimates of population and travel times with optimisation methods to derive theoretical CHW geographical placement scenarios including constraints on walking time and the number of people served per CHW. Four national-scale scenarios that align with total numbers of existing CHWs and that ensure that the walking time for each CHW does not exceed a predefined threshold are compared. The first scenario accounts for population distribution in rural and urban areas only, while the other three also incorporate in different ways the proximity of existing health centres. Comparing these scenarios to the current distribution, insufficient number of CHWs is systematically identified in several departments and gaps in access to health care are identified within all departments. These results highlight current suboptimal distribution of CHWs and emphasize the need to consider an optimal (re-)allocation.
RESUMEN
Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts from 771 health facilities reporting from across the country throughout the 6-year period from January 2014 to December 2019. To this end, a novel hierarchical Bayesian modelling framework was developed in which a latent, pixel-level incidence surface with spatio-temporal innovations is linked to the observed case data via a flexible catchment sub-model designed to account for the absence of data on case household locations. These maps have focussed the delivery of indoor residual spraying and focal mass drug administration in the Grand'Anse Department in South-Western Haiti.
Asunto(s)
Enfermedades Endémicas , Malaria/epidemiología , Estaciones del Año , Antimaláricos/uso terapéutico , Teorema de Bayes , Áreas de Influencia de Salud , Enfermedades Endémicas/prevención & control , Haití/epidemiología , Humanos , Incidencia , Malaria/diagnóstico , Malaria/prevención & control , Modelos Estadísticos , Control de Mosquitos , Análisis Espacio-Temporal , Factores de TiempoRESUMEN
BACKGROUND: Most impact prediction of malaria vector control interventions has been based on African vectors. Anopheles albimanus, the main vector in Central America and the Caribbean, has higher intrinsic mortality, is more zoophilic and less likely to rest indoors. Therefore, relative impact among interventions may be different. Prioritizing interventions, in particular for eliminating Plasmodium falciparum from Haiti, should consider local vector characteristics. METHODS: Field bionomics data of An. albimanus from Hispaniola and intervention effect data from southern Mexico were used to parameterize mathematical malaria models. Indoor residual spraying (IRS), insecticide-treated nets (ITNs), and house-screening were analysed by inferring their impact on the vectorial capacity in a difference-equation model. Impact of larval source management (LSM) was assumed linear with coverage. Case management, mass drug administration and vaccination were evaluated by estimating their effects on transmission in a susceptible-infected-susceptible model. Analogous analyses were done for Anopheles gambiae parameterized with data from Tanzania, Benin and Nigeria. RESULTS: While LSM was equally effective against both vectors, impact of ITNs on transmission by An. albimanus was much lower than for An. gambiae. Assuming that people are outside until bedtime, this was similar for the impact of IRS with dichlorodiphenyltrichloroethane (DDT) or bendiocarb, and impact of IRS was less than that of ITNs. However, assuming people go inside when biting starts, IRS had more impact on An. albimanus than ITNs. While house-screening had less impact than ITNs or IRS on An. gambiae, it had more impact on An. albimanus than ITNs or IRS. The impacts of chemoprevention and chemotherapy were comparable in magnitude to those of strategies against An. albimanus. Chemo-prevention impact increased steeply as coverage approached 100%, whilst clinical-case management impact saturated because of remaining asymptomatic infections. CONCLUSIONS: House-screening and repellent IRS are potentially highly effective against An. albimanus if people are indoors during the evening. This is consistent with historical impacts of IRS with DDT, which can be largely attributed to excito-repellency. It also supports the idea that housing improvements have played a critical role in malaria control in North America. For elimination planning, impact estimates need to be combined with feasibility and cost-analysis.