Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37372210

RESUMEN

Understanding the dynamics of complex systems defined in the sense of Caputo, such as fractional differences, is crucial for predicting their behavior and improving their functionality. In this paper, the emergence of chaos in complex dynamical networks with indirect coupling and discrete systems, both utilizing fractional order, is presented. The study employs indirect coupling to produce complex dynamics in the network, where the connection between the nodes occurs through intermediate fractional order nodes. The temporal series, phase planes, bifurcation diagrams, and Lyapunov exponent are considered to analyze the inherent dynamics of the network. Analyzing the spectral entropy of the chaotic series generated, the complexity of the network is quantified. As a final step, we demonstrate the feasibility of implementing the complex network. It is implemented on a field-programmable gate array (FPGA), which confirms its hardware realizability.

2.
Entropy (Basel) ; 25(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37238462

RESUMEN

In this work, the problem of master-slave outer synchronization in different inner-outer network topologies is presented. Specifically, the studied inner-outer network topologies are coupled in master-slave configuration, where some particular scenarios concerning inner-outer topologies are addressed in order to disclose a suitable coupling strength to achieve outer synchronization. The novel MACM chaotic system is used as a node in the coupled networks, which presents robustness in its bifurcation parameters. Extensive numerical simulations are presented where the stability of the inner-outer network topologies is analyzed through a master stability function approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA