Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Apoptosis ; 18(8): 980-97, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23564313

RESUMEN

Despite the availability of melanoma treatment at the primary site, the recurrence of local melanoma can metastasize to any distant organ. Currently, the available therapies for the treatment of metastatic melanoma are of limited benefit. Thus, the functional analysis of conventional therapies may help to improve their efficiency in the treatment of metastatic melanoma. In the present study, the exposure of melanoma cells to vinblastine was found to trigger apoptosis as evidenced by the loss of mitochondrial membrane potential, the release of both cytochrome c and apoptosis inducing factor, activation of caspase-9 and 3, and cleavage of Poly (ADP-ribose)-Polymerase. Also, vinblastine enhances the phosphorylation of Ras homologous protein A, the accumulation of reactive oxygen species, the release of intracellular Ca(2+), as well as the activation of apoptosis signal-regulating kinase 1, c-jun-N-terminal kinase, p38, inhibitor of kappaBα (IκBα) kinase, and inositol requiring enzyme 1α. In addition, vinblastine induces the DNA-binding activities of the transcription factor NF-κB, HSF1, AP-1, and ATF-2, together with the expression of HSP70 and Bax proteins. Moreover, inhibitory experiments addressed a central role for Rho A in the regulation of vinblastine-induced apoptosis of melanoma cells via mitochondrial and non-mitochondrial-dependent mechanisms. In conclusion, the present study addresses for the first time a central role for Rho A in the modulation of vinblastine-induced apoptosis of melanoma cells and thereby provides an insight into the molecular action of vinblastine in melanoma treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Melanoma/enzimología , Mitocondrias/metabolismo , Vinblastina/farmacología , Proteína de Unión al GTP rhoA/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteína de Unión al GTP rhoA/genética
3.
Cell Signal ; 25(1): 308-18, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23079083

RESUMEN

Generally, both endoplasmic reticulum (ER) stress and mitochondrial dysregulation are a potential therapeutic target of anticancer agents including bortezomib. The treatment of melanoma cells with bortezomib was found to induce apoptosis together with the upregulation of Noxa, Mcl-1, and HSP70 proteins, and the cleavage of LC3 and autophagic formation. Also, bortezomib induced ER-stress as evidenced by the increase of intracellular Ca(2+) release. In addition, bortezomib enhanced the phosphorylation of inositol-requiring transmembrane kinase and endonuclease 1α (IRE1α), apoptosis signal-regulating kinase 1 (ASK1), c-jun-N-terminal kinase (JNK) and p38, and the activation of the transcription factors AP-1, ATF-2, Ets-1, and HSF1. Bortezomib-induced mitochondrial dysregulation was associated with the accumulation of reactive oxygen species (ROS), the release of both apoptosis inducing factor (AIF) and cytochrome c, the activation of caspase-9 and caspase-3, and cleavage of Poly (ADP-ribose) polymerase (PARP). The pretreatment of melanoma cells with the inhibitor of caspase-3 (Ac-DEVD-CHO) was found to block bortezomib-induced apoptosis that subsequently led to the increase of autophagic formation. In contrast, the inhibition of ASK1 abrogated bortezomib-induced autophagic formation and increased apoptosis induction. Furthermore, the inhibition of JNK, of HSP70 also increased apoptosis induction without influence of bortezomib-induced autophagic formation. Based on the inhibitory experiments, the treatment with bortezomib triggers the activation of both ER-stress-associated pathways, namely IRE1α-ASK1-p38-ATF-2/ets-1-Mcl-1, and IRE1α-ASK1-JNK-AP-1/HSF1-HSP70 as well as mitochondrial dysregulation-associated pathways, namely ROS-ASK1-JNK-AP-1/HSF1-HS70, and AIF-caspase-3-PARP and Cyt.c, and caspase-9-caspase-3-PARP. Taken together, our data demonstrates for the first time the molecular mechanisms, whereby bortezomib triggers both apoptosis and autophagic formation in melanoma cells.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ácidos Borónicos/toxicidad , Inhibidores de Proteasoma/toxicidad , Pirazinas/toxicidad , Bortezomib , Calcio/metabolismo , Caspasa 3/química , Caspasa 3/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Melanoma/metabolismo , Melanoma/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteína Proto-Oncogénica c-ets-1/antagonistas & inhibidores , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA