Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 102(6): 923-33, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18819947

RESUMEN

BACKGROUND AND AIMS: Plants are naturally exposed to multiple, frequently interactive stress factors, most of which are becoming more severe due to global change. Established plants have been reported to facilitate the establishment of juvenile plants, but net effects of plant-plant interactions are difficult to assess due to complex interactions among environmental factors. An investigation was carried out in order to determine how two dominant evergreen shrubs (Quercus ilex and Arctostaphylos uva-ursi) co-occurring in continental, Mediterranean habitats respond to multiple abiotic stresses and whether the shaded understorey conditions ameliorate the negative effects of drought and winter frosts on the physiology of leaves. METHODS: Microclimate and ecophysiology of sun and shade plants were studied at a continental plateau in central Spain during 2004-2005, with 2005 being one of the driest and hottest years on record; several late-winter frosts also occurred in 2005. KEY RESULTS: Daytime air temperature and vapour pressure deficit were lower in the shade than in the sun, but soil moisture was also lower in the shade during the spring and summer of 2005, and night-time temperatures were higher in the shade. Water potential, photochemical efficiency, light-saturated photosynthesis, stomatal conductance and leaf 13C composition differed between sun and shade individuals throughout the seasons, but differences were species specific. Shade was beneficial for leaf-level physiology in Q. ilex during winter, detrimental during spring for both species, and of little consequence in summer. CONCLUSIONS: The results suggest that beneficial effects of shade can be eclipsed by reduced soil moisture during dry years, which are expected to be more frequent in the most likely climate change scenarios for the Mediterranean region.


Asunto(s)
Arctostaphylos/fisiología , Sequías , Congelación , Quercus/fisiología , Estaciones del Año , Luz Solar , Análisis de Varianza , Isótopos de Carbono , Ecosistema , Región Mediterránea , Microclima , Fotoquímica , Fotosíntesis , Lluvia , Suelo , Temperatura , Factores de Tiempo , Agua/fisiología
2.
Ann Bot ; 100(2): 283-303, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17586597

RESUMEN

BACKGROUND: Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. METHODS: The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. KEY RESULTS: For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. CONCLUSIONS: These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs.


Asunto(s)
Clima , Ecosistema , Magnoliopsida/metabolismo , Hojas de la Planta/metabolismo , Carbono/metabolismo , Magnoliopsida/anatomía & histología , Magnoliopsida/química , Nitrógeno/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Agua/metabolismo
3.
New Phytol ; 171(1): 91-104, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16771985

RESUMEN

The implications of extensive variation in leaf size for biomass distribution between physiological and support tissues and for overall leaf physiological activity are poorly understood. Here, we tested the hypotheses that increases in leaf size result in enhanced whole-plant support investments, especially in compound-leaved species, and that accumulation of support tissues reduces average leaf nitrogen (N) content per unit dry mass (N(M)), a proxy for photosynthetic capacity. Leaf biomass partitioning among the lamina, mid-rib and petiole, and whole-plant investments in leaf support (within-leaf and stem) were studied in 33 simple-leaved and 11 compound-leaved species. Support investments in mid-ribs and petioles increased with leaf size similarly in simple leaves and leaflets of compound leaves, but the overall support mass fraction within leaves was larger in compound-leaved species as a result of prominent rachises. Within-leaf and within-plant support mass investments were negatively correlated. Therefore, the total plant support fraction was independent of leaf size and lamina dissection. Because of the lower N(M) of support biomass, the difference in N(M) between the entire leaf and the photosynthetic lamina increased with leaf size. We conclude that whole-plant support costs are weakly size-dependent, but accumulation of support structures within the leaf decreases whole-leaf average N(M), potentially reducing the integrated photosynthetic activity of larger leaves.


Asunto(s)
Biomasa , Hojas de la Planta/anatomía & histología , Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Árboles/metabolismo
4.
Ann Bot ; 89(2): 191-204, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12099350

RESUMEN

Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and N(M) may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within-plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H.


Asunto(s)
Betula/crecimiento & desarrollo , Biomasa , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Betula/metabolismo , Carbono/metabolismo , Transporte de Electrón/fisiología , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/metabolismo , Suelo/análisis , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA