Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 37: 452-463, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28427656

RESUMEN

In this study dependency of simultaneous adsorption of Congo Red (CR), Phloxine B (BP) and Fast green FCF (FG) onto CuS/ZnS nanocomposites loaded on activated carbon (CuS/ZnS-NCs-AC) to pH, adsorbent mass, sonication time and initial dyes concentration were modeled and optimized, while CuS/ZnS-NCs-AC was identified by XRD, FESEM and EDS analysis. CR, PB and FG concentration determination were undertaken by first and second order derivative spectrophotometry in ternary mixture. According to central composite design (CCD) based on desirability function (DF), the best experimental conditions was set as pH 6.0, 0.02g CuS/ZnS-NCs-AC, 5min sonication time, 15mgL-1 for PB and 10mgL-1 for other dyes. Conduction of experiments to above conditions lead to highest dyes removal efficiency of 99.72, 98.8 and 98.17 for CR, PB and FG, respectively. The adsorption data efficiently fitted by Langmuir isotherm model, while the order of maximum adsorption capacity (Qmax) for PB (128.21mgg-1)>CR (88.57mgg-1)>FG (73.40mgg-1) is related to their different structure and charges. Kinetics of process was efficiently explained according to pseudo-second-order kinetic in cooperation of Weber and Morris based on intraparticle diffusion.

2.
Ultrason Sonochem ; 34: 692-699, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773296

RESUMEN

A sensitive procedure namely ultrasound-assisted (UA) coupled dispersive nano solid-phase microextraction spectrophotometry (DNSPME-UV-Vis) was designed for preconcentration and subsequent determination of gallic acid (GA) from water samples, while the detailed of composition and morphology and also purity and structure of this new sorbent was identified by techniques like field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Among conventional parameters viz. pH, amount of sorbent, sonication time and volume of elution solvent based on Response Surface Methodology (RSM) and central composite design according to statistics based contour the best operational conditions was set at pH of 2.0; 1.5mg sorbent, 4.0min sonication and 150µL ethanol. Under these pre-qualified conditions the method has linear response over wide concentration range of 15-6000ngmL-1 with a correlation coefficient of 0.9996. The good figure of merits like acceptable LOD (S/N=3) and LOQ (S/N=10) with numerical value of 2.923 and 9.744ngmL-1, respectively and relative recovery between 95.54 and 100.02% show the applicability and efficiency of this method for real samples analysis with RSDs below 6.0%. Finally the method with good performance were used for monitoring under study analyte in various real samples like tap, river and mineral waters.


Asunto(s)
Ácido Gálico/análisis , Ácido Gálico/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Sonicación , Espectrofotometría , Agua/química , Ácido Gálico/química , Límite de Detección , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA