Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114641, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39154339

RESUMEN

Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.


Asunto(s)
Piroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Yersiniosis , Animales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Fosforilación , Yersiniosis/metabolismo , Yersiniosis/microbiología , Ratones , Caspasa 8/metabolismo , Ratones Endogámicos C57BL , Yersinia/metabolismo , Humanos
2.
Cell Rep ; 43(9): 114685, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39213151

RESUMEN

Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling. Our findings propose CD14 as a crucial chaperone of Fas receptor internalization in macrophages and neutrophils, resulting in Cd14-/- myeloid cells that are protected from FasL-induced apoptosis, activate nuclear factor κB (NF-κB), and release cytokines in response. As in TLR signaling, CD14 is also required for Fas to signal through the adaptor TRIF (TIR-domain-containing adapter-inducing interferon-ß) and induce a pro-death complex. Our findings demonstrate that CD14 availability can determine the switch between Fas-mediated pro-death and pro-inflammatory outcomes by internalizing the receptor.

3.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38645182

RESUMEN

Local immune processes within aging tissues are a significant driver of aging associated dysfunction, but tissue-autonomous pathways and cell types that modulate these responses remain poorly characterized. The cytosolic DNA sensing pathway, acting through cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING), is broadly expressed in tissues, and is poised to regulate local type I interferon (IFN-I)-dependent and independent inflammatory processes within tissues. Recent studies suggest that the cGAS/STING pathway may drive pathology in various in vitro and in vivo models of accelerated aging. To date, however, the role of the cGAS/STING pathway in physiological aging processes, in the absence of genetic drivers, has remained unexplored. This remains a relevant gap, as STING is ubiquitously expressed, implicated in multitudinous disorders, and loss of function polymorphisms of STING are highly prevalent in the human population (>50%). Here we reveal that, during physiological aging, STING-deficiency leads to a significant shortening of murine lifespan, increased pro-inflammatory serum cytokines and tissue infiltrates, as well as salient changes in histological composition and organization. We note that aging hearts, livers, and kidneys express distinct subsets of inflammatory, interferon-stimulated gene (ISG), and senescence genes, collectively comprising an immune fingerprint for each tissue. These distinctive patterns are largely imprinted by tissue-specific stromal and myeloid cells. Using cellular interaction network analyses, immunofluorescence, and histopathology data, we show that these immune fingerprints shape the tissue architecture and the landscape of cell-cell interactions in aging tissues. These age-associated immune fingerprints are grossly dysregulated with STING-deficiency, with key genes that define aging STING-sufficient tissues greatly diminished in the absence of STING. Changes in immune signatures are concomitant with a restructuring of the stromal and myeloid fractions, whereby cell:cell interactions are grossly altered and resulting in disorganization of tissue architecture in STING-deficient organs. This altered homeostasis in aging STING-deficient tissues is associated with a cross-tissue loss of homeostatic tissue-resident macrophage (TRM) populations in these tissues. Ex vivo analyses reveal that basal STING-signaling limits the susceptibility of TRMs to death-inducing stimuli and determines their in situ localization in tissue niches, thereby promoting tissue homeostasis. Collectively, these data upend the paradigm that cGAS/STING signaling is primarily pathological in aging and instead indicate that basal STING signaling sustains tissue function and supports organismal longevity. Critically, our study urges caution in the indiscriminate targeting of these pathways, which may result in unpredictable and pathological consequences for health during aging.

5.
Sci Immunol ; 7(78): eadd0665, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563168

RESUMEN

TNF mediates a variety of biological processes including cellular proliferation, inflammatory responses, and cell death and is therefore associated with numerous pathologies including autoinflammatory diseases and septic shock. The inflammatory and cell death responses to TNF have been studied extensively downstream of TNF-R1 and are believed to rely on the formation of proinflammatory complex I and prodeath complex II, respectively. We recently identified a similar multimeric complex downstream of TLR4, termed the TRIFosome, that regulates inflammation and cell death in response to LPS or Yersinia pseudotuberculosis. We present evidence of a role for the TRIFosome downstream of TNF-R1, independent of TLR3 or TLR4 engagement. Specifically, TNF-induced cell death and inflammation in murine macrophages were driven by the TLR4 adaptor TRIF and the LPS co-receptor CD14, highlighting an important role for these proteins beyond TLR-mediated immune responses. Via immunoprecipitation and visualization of TRIF-specific puncta, we demonstrated TRIF- and CD14-dependent formation of prodeath and proinflammatory complexes in response to TNF. Extending these findings, in a murine TNF-induced sepsis model, TRIF and CD14 deficiency decreased systemic inflammation, reduced organ pathology, and improved survival. The outcome of TRIF activation was cell specific, because TNF-induced lethality was mediated by neutrophils and macrophages responding to TNF in a TRIF-dependent manner. Our findings suggest that in addition to their crucial role in TNF production, myeloid cells are central to TNF toxicity and position TRIF and CD14 as universal components of receptor-mediated immune responses.


Asunto(s)
Neutrófilos , Receptores Tipo I de Factores de Necrosis Tumoral , Animales , Ratones , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Inflamación/metabolismo , Receptores de Lipopolisacáridos , Lipopolisacáridos , Macrófagos , Neutrófilos/metabolismo , Transducción de Señal , Receptor Toll-Like 4 , Factores de Necrosis Tumoral/metabolismo
6.
Curr Biol ; 32(16): R891-R894, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998601

RESUMEN

Mitochondria are central to apoptosis, an immunologically silent form of cell death. The mitochondrial, or 'intrinsic', apoptotic pathway is activated when the permeabilized mitochondrial membrane of stressed cells releases apoptotic effectors. A new study now characterizes how mitochondria are involved in the switch from pyroptotic to necroptotic cell death.


Asunto(s)
Apoptosis , Mitocondrias , Apoptosis/fisiología , Muerte Celular , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(24): e2113872119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666872

RESUMEN

ZBP1 is widely recognized as a mediator of cell death for its role in initiating necroptotic, apoptotic, and pyroptotic cell death pathways in response to diverse pathogenic infection. Herein, we characterize an unanticipated role for ZBP1 in promoting inflammatory responses to bacterial lipopolysaccharide (LPS) or double-stranded RNA (dsRNA). In response to both stimuli, ZBP1 promotes the timely delivery of RIPK1 to the Toll-like receptor (TLR)3/4 adaptor TRIF and M1-ubiquitination of RIPK1, which sustains activation of inflammatory signaling cascades downstream of RIPK1. Strikingly, ZBP1-mediated regulation of these pathways is important in vivo, as Zbp1−/− mice exhibited resistance to LPS-induced septic shock, revealed by prolonged survival and delayed onset of hypothermia due to decreased inflammatory responses and subsequent cell death. Further findings revealed that ZBP1 promotes sustained inflammatory responses by mediating the kinetics of proinflammatory "TRIFosome" complex formation, thus having a profound impact downstream of TLR activation. Given the well-characterized role of ZBP1 as a viral sensor, our results exemplify previously unappreciated crosstalk between the pathways that regulate host responses to bacteria and viruses, with ZBP1 acting as a crucial bridge between the two.


Asunto(s)
Inflamación , Receptor Toll-Like 3 , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , ARN Bicatenario , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo
8.
Front Hum Neurosci ; 15: 710003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630058

RESUMEN

Brain states, which correlate with specific motor, cognitive, and emotional states, may be monitored with noninvasive techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) that measure macroscopic cortical activity manifested as oscillatory network dynamics. These rhythmic cortical signatures provide insight into the neuronal activity used to identify pathological cortical function in numerous neurological and psychiatric conditions. Sensory and transcranial stimulation, entraining the brain with specific brain rhythms, can effectively induce desired brain states (such as state of sleep or state of attention) correlated with such cortical rhythms. Because brain states have distinct neural correlates, it may be possible to induce a desired brain state by replicating these neural correlates through stimulation. To do so, we propose recording brain waves from a "donor" in a particular brain state using EEG/MEG to extract cortical signatures of the brain state. These cortical signatures would then be inverted and used to entrain the brain of a "recipient" via sensory or transcranial stimulation. We propose that brain states may thus be transferred between people by acquiring an associated cortical signature from a donor, which, following processing, may be applied to a recipient through sensory or transcranial stimulation. This technique may provide a novel and effective neuromodulation approach to the noninvasive, non-pharmacological treatment of a variety of psychiatric and neurological disorders for which current treatments are mostly limited to pharmacotherapeutic interventions.

9.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156982

RESUMEN

The stimulator of IFN genes (STING) protein senses cyclic dinucleotides released in response to double-stranded DNA and functions as an adaptor molecule for type I IFN (IFNI) signaling by activating IFNI-stimulated genes (ISG). We found impaired T cell infiltration into the peritoneum in response to TNF-α in global and EC-specific STING-/- mice and discovered that T cell transendothelial migration (TEM) across mouse and human endothelial cells (EC) deficient in STING was strikingly reduced compared with control EC, whereas T cell adhesion was not impaired. STING-/- T cells showed no defect in TEM or adhesion to EC, or immobilized endothelial cell-expressed molecules ICAM1 and VCAM1, compared with WT T cells. Mechanistically, CXCL10, an ISG and a chemoattractant for T cells, was dramatically reduced in TNF-α-stimulated STING-/- EC, and genetic loss or pharmacologic antagonisms of IFNI receptor (IFNAR) pathway reduced T cell TEM. Our data demonstrate a central role for EC-STING during T cell TEM that is dependent on the ISG CXCL10 and on IFNI/IFNAR signaling.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana/inmunología , Receptor de Interferón alfa y beta , Linfocitos T , Migración Transendotelial y Transepitelial/inmunología , Animales , Inmunidad Innata , Molécula 1 de Adhesión Intercelular/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Ratones , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/inmunología
10.
Curr Protoc ; 1(6): e156, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34106523

RESUMEN

A large protein complex, containing RIPK1, RIPK3, and caspase-8 and known as Complex II, has emerged as one of the key mediators of cell death downstream from a range of innate immune triggers. This regulatory mechanism plays a prominent role in macrophages, where Complex II has been linked to apoptosis, pyroptosis, and necroptosis as well as the enhancement of inflammatory gene expression. Although core components of this complex are fairly well understood, more subtle proteomic changes that determine the direction of a response once the complex is assembled remain much less clear. In addition, Complex II components undergo a wealth of post-translational changes that modify the functions of the complex components. This necessitates development of robust and efficient methods of isolating Complex II for further interrogation of its composition and the post-translational modifications of its components. This article describes several methods that we have developed for Complex II isolation, which can be used to obtain complementary information about this signaling mechanism. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of Complex II in necroptotic and pyroptotic macrophages using FADD immunoprecipitation Basic Protocol 2: Isolation of the complexes formed by the conditionally expressed 3XFLAG-RIPK1 protein Alternate Protocol: Alternative methods of immunoprecipitation of RIPK1 and other Complex-II-related factors Support Protocol: Generation of stable macrophage cell lines using lentiviral expression Basic Protocol 3: Use of proximity labeling to identify necrosome components in the detergent-insoluble fraction of the cell lysates.


Asunto(s)
Proteómica , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Apoptosis , Inmunoprecipitación , Macrófagos/metabolismo , Ratones , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
11.
Nat Commun ; 12(1): 86, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397971

RESUMEN

Inflammation and cell death are closely linked arms of the host immune response to infection, which when carefully balanced ensure host survival. One example of this balance is the tightly regulated transition from TNFR1-associated pro-inflammatory complex I to pro-death complex II. By contrast, here we show that a TRIF-dependent complex containing FADD, RIPK1 and caspase-8 (that we have termed the TRIFosome) mediates cell death in response to Yersinia pseudotuberculosis and LPS. Furthermore, we show that constitutive binding between ZBP1 and RIPK1 is essential for the initiation of TRIFosome interactions, caspase-8-mediated cell death and inflammasome activation, thus positioning ZBP1 as an effector of cell death in the context of bacterial blockade of pro-inflammatory signaling. Additionally, our findings offer an alternative to the TNFR1-dependent model of complex II assembly, by demonstrating pro-death complex formation reliant on TRIF signaling.


Asunto(s)
Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Caspasa 8/metabolismo , Muerte Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Yersinia
12.
Trends Immunol ; 41(8): 648-651, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32622855

RESUMEN

Multiple research groups have demonstrated that caspase-8 (CASP8)-mediated gasdermin D (GSDMD) cleavage drives pyroptotic cell death. Here, we discuss a novel role for the enzymatically inactive homolog of CASP8, the long isoform of cellular FLICE-like inhibitory protein (cFLIPL), in the regulation of this process. Specifically, cFLIP-deficiency provides a model in which to study the mechanisms regulating CASP8-mediated activation of cell death and inflammatory signaling.


Asunto(s)
Apoptosis , Inflamación , Transducción de Señal , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/deficiencia , Caspasa 8/metabolismo , Humanos , Inflamación/patología , Modelos Inmunológicos , Piroptosis , Transducción de Señal/inmunología
13.
Science ; 367(6484): 1379-1384, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193329

RESUMEN

Cell death and inflammation are interdependent host responses to infection. During pyroptotic cell death, interleukin-1ß (IL-1ß) release occurs through caspase-1 and caspase-11-mediated gasdermin D pore formation. In vivo, responses to lipopolysaccharide (LPS) result in IL-1ß secretion. In vitro, however, murine macrophages require a second "danger signal" for the inflammasome-driven maturation of IL-1ß. Recent reports have shown caspase-8-mediated pyroptosis in LPS-activated macrophages but have provided conflicting evidence regarding the release of IL-1ß under these conditions. Here, to further characterize the mechanism of LPS-induced secretion in vitro, we reveal an important role for cellular FLICE-like inhibitory protein (cFLIP) in the regulation of the inflammatory response. Specifically, we show that deficiency of the long isoform cFLIPL promotes complex II formation, driving pyroptosis, and the secretion of IL-1ß in response to LPS alone.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/fisiología , Complejo II de Transporte de Electrones/metabolismo , Inflamasomas/metabolismo , Activación de Macrófagos , Macrófagos/fisiología , Piroptosis , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Técnicas de Silenciamiento del Gen , Interleucina-1beta/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
14.
Cell Rep ; 30(3): 699-713.e4, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968247

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are well known for their capacity to drive necroptosis via mixed-lineage kinase-like domain (MLKL). Recently, RIPK1/3 kinase activity has been shown to drive inflammation via activation of MAPK signaling. However, the regulatory mechanisms underlying this kinase-dependent cytokine production remain poorly understood. In the present study, we establish that the kinase activity of RIPK1/3 regulates cytokine translation in mouse and human macrophages. Furthermore, we show that this inflammatory response is downregulated by type I interferon (IFN) signaling, independent of type I IFN-promoted cell death. Specifically, low-level constitutive IFN signaling attenuates RIPK-driven activation of cap-dependent translation initiation pathway components AKT, mTORC1, 4E-BP and eIF4E, while promoting RIPK-dependent cell death. Altogether, these data characterize constitutive IFN signaling as a regulator of RIPK-dependent inflammation and establish cap-dependent translation as a crucial checkpoint in the regulation of cytokine production.


Asunto(s)
Citocinas/metabolismo , Interferones/metabolismo , Biosíntesis de Proteínas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Citocinas/genética , Regulación hacia Abajo , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Inflamación/patología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
15.
Cells ; 8(8)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387291

RESUMEN

In the article 'Retroelement-Linked Transcription Factor Binding Patterns Point to Quickly Developing Molecular Pathways in Human Evolution,' a number of transcription factor binding sites (TFBS) mapped on all retroelement classes were incorrectly calculated as sum of TFBS numbers separately mapped on LINEs, SINEs and LTR retrotransposons/endogenous retroviruses (LR/ERVs) [...].

16.
Cells ; 8(2)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736359

RESUMEN

BACKGROUND: Retroelements (REs) are transposable elements occupying ~40% of the human genome that can regulate genes by providing transcription factor binding sites (TFBS). RE-linked TFBS profile can serve as a marker of gene transcriptional regulation evolution. This approach allows for interrogating the regulatory evolution of organisms with RE-rich genomes. We aimed to characterize the evolution of transcriptional regulation for human genes and molecular pathways using RE-linked TFBS accumulation as a metric. Methods: We characterized human genes and molecular pathways either enriched or deficient in RE-linked TFBS regulation. We used ENCODE database with mapped TFBS for 563 transcription factors in 13 human cell lines. For 24,389 genes and 3124 molecular pathways, we calculated the score of RE-linked TFBS regulation reflecting the regulatory evolution rate at the level of individual genes and molecular pathways. Results: The major groups enriched by RE regulation deal with gene regulation by microRNAs, olfaction, color vision, fertilization, cellular immune response, and amino acids and fatty acids metabolism and detoxication. The deficient groups were involved in translation, RNA transcription and processing, chromatin organization, and molecular signaling. Conclusion: We identified genes and molecular processes that have characteristics of especially high or low evolutionary rates at the level of RE-linked TFBS regulation in human lineage.


Asunto(s)
Evolución Biológica , Retroelementos/genética , Factores de Transcripción/metabolismo , Sitios de Unión , Línea Celular , Ontología de Genes , Humanos , Unión Proteica
17.
Cell Death Differ ; 26(2): 332-347, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29786074

RESUMEN

Interferons (IFNs) are critical determinants in immune-competence and autoimmunity, and are endogenously regulated by a low-level constitutive feedback loop. However, little is known about the functions and origins of constitutive IFN. Recently, lipopolysaccharide (LPS)-induced IFN was implicated as a driver of necroptosis, a necrotic form of cell death downstream of receptor-interacting protein (RIP) kinase activation and executed by mixed lineage kinase like-domain (MLKL) protein. We found that the pre-established IFN status of the cell, instead of LPS-induced IFN, is critical for the early initiation of necroptosis in macrophages. This pre-established IFN signature stems from cytosolic DNA sensing via cGAS/STING, and maintains the expression of MLKL and one or more unknown effectors above a critical threshold to allow for MLKL oligomerization and cell death. Finally, we found that elevated IFN-signaling in systemic lupus erythematosus (SLE) augments necroptosis, providing a link between pathological IFN and tissue damage during autoimmunity.


Asunto(s)
Interferón beta/metabolismo , Macrófagos/metabolismo , Necroptosis , Proteínas Quinasas/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citosol/metabolismo , ADN/metabolismo , Técnicas de Inactivación de Genes , Humanos , Interferón beta/genética , Interferón beta/farmacología , Lipopolisacáridos/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
18.
Proc Natl Acad Sci U S A ; 115(46): E10888-E10897, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30381458

RESUMEN

Cell death and inflammation are intimately linked during Yersinia infection. Pathogenic Yersinia inhibits the MAP kinase TGFß-activated kinase 1 (TAK1) via the effector YopJ, thereby silencing cytokine expression while activating caspase-8-mediated cell death. Here, using Yersinia pseudotuberculosis in corroboration with costimulation of lipopolysaccharide and (5Z)-7-Oxozeaenol, a small-molecule inhibitor of TAK1, we show that caspase-8 activation during TAK1 inhibition results in cleavage of both gasdermin D (GSDMD) and gasdermin E (GSDME) in murine macrophages, resulting in pyroptosis. Loss of GsdmD delays membrane rupture, reverting the cell-death morphology to apoptosis. We found that the Yersinia-driven IL-1 response arises from asynchrony of macrophage death during bulk infections in which two cellular populations are required to provide signal 1 and signal 2 for IL-1α/ß release. Furthermore, we found that human macrophages are resistant to YopJ-mediated pyroptosis, with dampened IL-1ß production. Our results uncover a form of caspase-8-mediated pyroptosis and suggest a hypothesis for the increased sensitivity of humans to Yersinia infection compared with the rodent reservoir.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 8/metabolismo , Yersiniosis/metabolismo , Animales , Apoptosis/fisiología , Proteínas Bacterianas/metabolismo , Humanos , Interleucina-1/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Fosfato , Piroptosis/fisiología , Yersiniosis/patología , Yersinia pseudotuberculosis/metabolismo
19.
Trends Mol Med ; 24(8): 658-668, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30060835

RESUMEN

Most genetic ablations of interferon (IFN) signaling abolish both the experimentally induced IFN response and constitutive IFN, whose effects are well established in autoimmunity but understudied during infection. In host-pathogen interactions, most IFN-mediated responses are attributed to infection-driven IFN. However, IFNs confer their activity by regulating networks of interferon-stimulated genes (ISGs), a process that requires de novo transcription and translation of both IFN and downstream ISGs through feedback of IFN receptor signaling. Due to the temporal requirement for IFN activity, many rapid antimicrobial responses may instead result from pre-established IFN signature stemming from host-intrinsic processes. Addressing the permeating effects of constitutive IFN is therefore needed to accurately describe immunity as host intrinsic or pathogen induced.


Asunto(s)
Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Infecciones/etiología , Infecciones/metabolismo , Interferones/metabolismo , Animales , Autoinmunidad , Biomarcadores , Modelos Animales de Enfermedad , Homeostasis , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación , Ligandos , Ratones , Transducción de Señal
20.
Cell Rep ; 24(1): 155-168.e5, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972777

RESUMEN

Legionella pneumophila elicits caspase-11-driven macrophage pyroptosis through guanylate-binding proteins (GBPs) encoded on chromosome 3. It has been proposed that microbe-driven IFN upregulates GBPs to facilitate pathogen vacuole rupture and bacteriolysis preceding caspase-11 activation. We show here that macrophage death occurred independently of microbial-induced IFN signaling and that GBPs are dispensable for pathogen vacuole rupture. Instead, the host-intrinsic IFN status sustained sufficient GBP expression levels to drive caspase-1 and caspase-11 activation in response to cytosol-exposed bacteria. In addition, endogenous GBP levels were sufficient for the release of DNA from cytosol-exposed bacteria, preceding the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway for Ifnb induction. Mice deficient for chromosome 3 GBPs were unable to mount a rapid IL-1/chemokine (C-X-C motif) ligand 1 (CXCL1) response during Legionella-induced pneumonia, with defective bacterial clearance. Our results show that rapid GBP activity is controlled by host-intrinsic cytokine signaling and that GBP activities precede immune amplification responses, including IFN induction, inflammasome activation, and cell death.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al GTP/metabolismo , Interferones/metabolismo , Legionella/metabolismo , Piroptosis , Animales , Antiinfecciosos/farmacología , Cromosomas de los Mamíferos/metabolismo , Citosol/metabolismo , Femenino , Humanos , Quinasas Janus/metabolismo , Legionelosis/microbiología , Macrófagos/citología , Masculino , Ratones Endogámicos C57BL , Neumonía/microbiología , Neumonía/patología , Receptor de Interferón alfa y beta/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA