Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Basic Microbiol ; 62(7): 779-787, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35551685

RESUMEN

Through the years, the genus Amycolatopsis has demonstrated its biotechnological potential. The need to clean up the environment and produce new antimicrobial molecules led to exploit promising bacterial genera such as Amycolatopsis. In this present work, we analyze the genome of the strain Amycolatopsis tucumanensis AB0 previously isolated from copper-polluted sediments. Phylogenomic and comparative analysis with the closest phylogenetic neighbor was performed. Our analysis showed the genetic potential of the strain to deal with heavy metals such as copper and mitigate oxidative stress. In addition, the ability to produce copper oxide nanoparticles and the presence of genes potentially involved in the synthesis of secondary metabolites suggest that A. tucumanensis may find utility in gray, red, and nano-biotechnology. To our knowledge, this is the first genomic analysis of an Amycolatopsis strain with potential for different biotechnological fields.


Asunto(s)
Actinomycetales , Cobre , Amycolatopsis , Cobre/metabolismo , ADN Bacteriano/genética , Genómica , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Chemosphere ; 279: 130505, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33865166

RESUMEN

Actinobacteria represent a ubiquitous group of microorganisms widely distributed in ecosystems. They have diverse physiological and metabolic properties, including the production of extracellular enzymes and a variety of secondary bioactive metabolites, such as antibiotics, immunosuppressants, and other compounds of industrial interest. Therefore, actinobacteria have been used for biotechnological purposes for more than three decades. The development of a biotechnological process requires the evaluation of its cost/benefit ratio, including the search for economic and efficient substrates for microorganisms development. Biodiesel is a clean, renewable, quality and economically viable source of energy, which also contributes to the conservation of the environment. Crude glycerol is the main by-product of biodiesel production and has many properties, so it has a commercial value that can be used to finance the biofuel production process. Actinobacteria can use glycerol as a source of carbon and energy, either pure o crude. A circular economy system aims to eliminate waste and pollution, keep products and materials in use, and regenerate natural systems. Although these principles are not yet met, some approaches are being made in this direction; the transformation of crude glycerol by actinobacteria is a process with great potential to be scaled on an industrial level. This review discusses the reports on glycerol as a promising source of carbon and energy for obtaining biomass and high-added value products by actinobacteria. Also, the factors influencing the biomass and secondary metabolites production in bioreactors are analyzed, and the tools available to overcome those that generate the main problems are discussed.


Asunto(s)
Actinobacteria , Glicerol , Biocombustibles , Biotecnología , Ecosistema
3.
3 Biotech ; 11(2): 57, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33489676

RESUMEN

In recent years, there has been an increasing interest in the remediation of contaminated environments, and a suitable solution is in situ bioremediation. To achieve this, large-scale bacterial biomass production should be sustainable, using economic culture media. The main aim of this study was to optimize the physicochemical conditions for the biomass production of an actinobacterium with well-known bioremediation ability using inexpensive substrates and to scale-up its production in a bioreactor. For this, the growth of four strains of actinobacteria were evaluated in minimal medium with glucose and glycerol as carbon and energy sources. In addition, l-asparagine and ammonium sulfate were assayed as alternative nitrogen sources. The strain Streptomyces sp. A5 showed the highest biomass production in shake-flasks culture using glycerol and ammonium sulfate as carbon and nitrogen sources, respectively. Factorial designs with five factors (glycerol concentration, inoculum size, pH, temperature, and agitation) were employed to optimize the biomass production of Streptomyces sp. A5. The maximum biomass production was obtained using 5 g L-1 of glycerol, 0.25 µL of inoculum, pH 7, 30 °C and 200 rpm. Finally, the production was successfully scaled to a 2 L stirred tank bioreactor. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02588-5.

4.
Heliyon ; 6(8): e04550, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32885063

RESUMEN

Gentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended vs. non-amended mixed polluted soils. All soils received the following treatments: (i) no treatment; (ii) bioaugmentation with an actinobacteria consortium; (iii) vermiremediation with Eisenia fetida; (iv) phytoremediation with Brassica napus; (v) bioaugmentation + vermiremediation; (vi) bioaugmentation + phytoremediation; and (vii) bioaugmentation + vermiremediation + phytoremediation. Soil health recovery was determined based on Cr(VI) and lindane concentrations, microbial properties and toxicity bioassays with plants and worms. Cr(VI) pollution caused high toxicity, but some GROs were able to partly recover soil health: (i) the organic amendment decreased Cr(VI) concentrations, alleviating toxicity; (ii) the actinobacteria consortium was effective at removing both Cr(VI) and lindane; (iii) B. napus and E. fetida had a positive effect on the removal of pollutants and improved microbial properties. The combination of the organic amendment, B. napus, E. fetida and the actinobacteria consortium was the most effective strategy.

5.
Ecotoxicol Environ Saf ; 156: 97-105, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29533212

RESUMEN

The biomixture is the major constituent of a biopurification system and one of the most important factors in its efficiency; hence the selection of the components is crucial to ensure the efficient pesticides removal. Besides, bioaugmentation is an interesting approach for the optimization of these systems. A mixed culture of the fungus Trametes versicolor SGNG1 and the actinobacteria Streptomyces sp. A2, A5, A11, and M7, was designed to inoculate the biomixtures, based on previously demonstrated ligninolytic and pesticide-degrading activities and the absence of antagonism among the strains. The presence of lindane and/or the inoculum in the biomixtures had no significant effect on the development of culturable microorganisms regardless the soil type. The consortium improved lindane dissipation achieving 81-87% of removal at 66 d of incubation in the different biomixtures, decreasing lindane half-life to an average of 24 d, i.e. 6-fold less than t1/2 of lindane in soils. However, after recontamination, only the bioaugmented biomixture of silty loam soil enhanced lindane dissipation and decreased the t1/2 compared to non-bioaugmented. The biomixture formulated with silty loam soil, sugarcane bagasse, and peat, inoculated with a fungal-actinobacterial consortium, could be appropriate for the treatment of agroindustrial effluents contaminated with organochlorine pesticides in biopurification systems.


Asunto(s)
Biodegradación Ambiental , Hexaclorociclohexano/química , Insecticidas/química , Fusarium/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Concentración de Iones de Hidrógeno , Suelo , Microbiología del Suelo , Contaminantes del Suelo/química , Streptomyces/metabolismo , Trametes/metabolismo
6.
Chemosphere ; 181: 478-484, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28460294

RESUMEN

The use of living actinobacteria biomass to clean up contaminated soils is an attractive biotechnology approach. However, biomass generation from cheap feedstock is the first step to ensure process sustainability. The present work reports the ability of four actinobacteria, Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis, to generate biomass from sugarcane vinasse. Optimal vinasse concentration to obtain the required biomass (more than 0.4 g L-1) was 20% for all strains, either grown individually or as mixed cultures. However, the biomass fraction recovered from first vinasse was discarded as it retained trace metals present in the effluent. Fractions recovered from three consecutive cycles of vinasse re-use obtained by mixing equal amounts of biomass from single cultures or produced as a mixed culture were evaluated to clean up contaminated soil with lindane and chromium. In all cases, the decrease in pesticide was about 50% after 14 d of incubation. However, chromium removal was statistically different depending on the preparation methodology of the inoculum. While the combined actinobacteria biomass recovered from their respective single cultures removed about 85% of the chromium, the mixed culture biomass removed more than 95%. At the end of the reused vinasse cycle, the mixed culture removed more than 70% of the biological oxygen demand suggesting a proportional reduction in the effluent toxicity. These results represent the first integral approach to address a problematic of multiple contaminations, concerning pesticides, heavy metals and a regionally important effluent like vinasse.


Asunto(s)
Actinobacteria/metabolismo , Biomasa , Restauración y Remediación Ambiental/métodos , Saccharum/microbiología , Actinobacteria/crecimiento & desarrollo , Análisis de la Demanda Biológica de Oxígeno , Cromo/aislamiento & purificación , Contaminación Ambiental/prevención & control , Hexaclorociclohexano/aislamiento & purificación , Plaguicidas , Suelo/química , Streptomyces/metabolismo
7.
Int J Mol Sci ; 13(11): 15086-106, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23203113

RESUMEN

In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.


Asunto(s)
Bacterias/metabolismo , Hexaclorociclohexano/metabolismo , Actinobacteria/metabolismo , Biodegradación Ambiental , Microbiología Ambiental , Contaminantes Ambientales/metabolismo , Bacterias Gramnegativas/metabolismo , Hexaclorociclohexano/química , Redes y Vías Metabólicas , Plantas/metabolismo , Plantas/microbiología
8.
J Gen Appl Microbiol ; 56(1): 11-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20339215

RESUMEN

Biological transformation of Cr(VI) to Cr(III) by enzymatic reduction may provide a less costly and more environmentally friendly approach to remediation. In a previous report a Cr(VI) resistant actinomycete strain, Streptomyces sp. MC1, was able to reduce Cr(VI) present in a synthetic medium, soil extract and soil samples. This is the first time optimal conditions such as pH, temperature, growth phase and electron donor have been elucidated in vitro for Cr(VI) reduction by a streptomycete. Chromate reductase of Streptomyces sp. MC1 is a constitutive enzyme which was mainly associated with biomass and required NAD(P)H as an electron donor. It was active over a broad temperature (19-39 degrees C) and pH (5-8) range, and optimum conditions were 30 degrees C and pH 7. The enzyme was present in supernatant, pellet and cell free extract. Bioremediation with the enzyme was observed in non-compatible cell reproduction systems, conditions frequently found in contaminated environments.


Asunto(s)
Cromo/metabolismo , Oxidorreductasas/metabolismo , Streptomyces/enzimología , Biodegradación Ambiental , Oxidorreductasas/química
9.
J Basic Microbiol ; 49(3): 285-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19025876

RESUMEN

This work provides quantitative information on Cr(VI) reduction in soil samples by an indigenous actinomycete. Streptomyces sp. MC1, previously isolated from sugarcane, has shown ability to reduce Cr(VI) in liquid minimal medium. A reduction of 100 and 75% was obtained at initial Cr(VI) concentrations of 5 and 50 mg l(-1), respectively, after 48 h of incubation. Bioremediation ability of Streptomyces sp. MC1 was assayed in soil extracts and soil samples. Relative growth of Streptomyces sp. MC1 was 77 and 38% when grown in soil extract with 10 and 50 mg l(-1) of Cr(VI), respectively. MC1 was able to reduce 30% of Cr(VI) after 96 h of incubation with 10 mg l(-1) of Cr(VI), and reduction coincided with the exponential growth phase at pH 7 and 30 degrees C.In soil samples, Streptomyces sp. MC1 was able to reduce up to 94% of the Cr(VI) bioavailability (50 mg kg(-1)) after 7 d. These results were compared with non-inoculated soil samples with Cr(VI). Bioremediation activity of Streptomyces sp. MC1 was not inhibited by natural soil microbial flora. Besides, Streptomyces sp. MC1 growth was not inhibited by 50 mg kg(-1) of Cr(VI). In contrast to findings obtained by other authors, our results showed almost complete Cr(VI) removal from soil without any previous treatment, and without addition of any substrate and with a normal soil humidity level. These results confirm the Cr(VI)-contaminated soil bioremediation potential of Streptomyces sp. MC1.


Asunto(s)
Cromo/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Streptomyces/metabolismo , Biodegradación Ambiental , Streptomyces/crecimiento & desarrollo
10.
Chemosphere ; 67(4): 660-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17182076

RESUMEN

Forty-one isolated actinomycetes were used to study qualitative and semi-quantitative screening of chromium(VI) resistance. Chromate-removing activity was estimated using the Cr(VI) specific colorimetric reagent 1,5-diphenylcarbazide. Twenty percent of the isolates from El Cadillal (EC) and 14% of isolates from a copper filter plant (CFP) were able to grow at 13 mM of Cr(VI). All isolates from sugar cane (SCP) could grow up to Cr(VI) concentration of 17 mM. EC, CFP and SCP strains were able to remove 24%, 30% and more than 40% of Cr(VI), respectively. The highest and lowest Cr(VI) specific removal values were 75.5 mg g(-1) cell by M3 (CFP), and 1.5 mg g(-1) cell by C35 (EC) strains. Eleven Cr(VI) resistant strains were characterized and identified as species of the genera Streptomyces (10) and Amycolatopsis (1). Differences on actinomycete community composition between contaminated and non-contaminated soil were found. This study showed the potential capacity of actinomycetes as tools for Cr(VI) bioremediation.


Asunto(s)
Actinobacteria/metabolismo , Cromo/farmacología , Farmacorresistencia Bacteriana , Sedimentos Geológicos/química , Actinobacteria/clasificación , Actinobacteria/efectos de los fármacos , Cromo/metabolismo , Filogenia , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA