Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118059, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32000059

RESUMEN

DL-glutamic acid monohydrate crystal was synthesized from an aqueous solution by slow evaporation technique. The crystal was submitted to high-pressure (1 atm-14.3 GPa) to investigate its vibrational behavior and the occurrence of phase transitions. We performed Raman spectroscopy as probe and through the analysis of the spectra we discovered three structural phase transitions. The first one occurs around 0.9 GPa. In this phase transition, glutamic acid molecules suffer modifications in their conformations while water molecules are less affected. The second phase transition at 4.8 GPa involves conformational changes related to CO2-, NH3+ units and the water molecules, while the third one, between 10.9 and 12.4 GPa, involves motions of several parts of the glutamic acid as well as the water molecules. Considering the dynamic of high pressure, the second phase of DL-glutamic acid monohydrate crystal presented a better stability compared with the second phase of its polymorphs α and ß L-glutamic acid. In addition, water molecules seem to play important role on this structural stability. All changes are reversible.


Asunto(s)
Ácido Glutámico/química , Conformación Molecular , Transición de Fase , Presión , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Espectrometría Raman
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 214: 207-215, 2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-30785040

RESUMEN

DL­isoleucine single crystals were grown by the slow evaporation method at ambient temperature. Their vibrational properties were studied at ambient temperature as a function of pressure by Raman scattering. At ambient conditions the mode assignment was done in terms of the Potential Energy Distribution (PED) through density functional theory calculations. Both nitrogen and neon were used as pressure transmitting media. The pressure-dependent investigation shows modifications in the Raman spectra recorded between 30 and 3200 cm-1 that were interpreted as phase transitions undergone by the crystal between 1.3 and 1.9 GPa and between 3.6 and 5.1 GPa. Finally, stress was simulated on the unit cell of the crystal from ambient up to 5.0 GPa.


Asunto(s)
Isoleucina/química , Modelos Moleculares , Teoría Funcional de la Densidad , Presión , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos
3.
J Phys Condens Matter ; 20(27): 275212, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-21694373

RESUMEN

Ga K-edge energy dispersive x-ray absorption spectroscopy and Raman spectroscopy measurements were employed to follow the pressure-induced semiconductor-metal phase transition of nanocrystalline GaSb produced by mechanical alloying up to 26 GPa. The results showed a slight increase of the phase transition pressures for both as-milled (8 GPa) and annealed (10 GPa) GaSb samples, as compared to that for the bulk one. The extended x-ray absorption fine structure analysis of the zinc blende (ZB) pressure domain (<10 GPa) showed that the microscopic compressibility of the bonds in the as-milled/annealed samples is higher/lower than the crystalline bulk modulus (56 GPa). The comparison between x-ray absorption near edge structure regions of the spectra and multiple scattering calculations suggests that the ZB structure evolves to a short-range chemically ordered ß-Sn structure for pressures as high as 8 GPa. Raman measurements confirm the semiconductor-metal phase transitions of ZB-GaSb between 8 and 11 GPa for both as-milled and annealed samples, showing that the semiconductor character was not recovered on releasing the pressure down to 3.9 and 1.8 GPa, indicating a very strong hysteresis effect (or even irreversible transitions). The well-known transverse effective charge reduction with pressure was also observed. Furthermore, resonance behaviour is clearly seen for transverse optical phonons and the resonance maxima peak occurs at about 1.2 GPa, corresponding to 2.11 eV in the E(1) scale, smaller by 0.3 eV than the incident photon energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA