Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 41(7): 1430-1438, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36370132

RESUMEN

High tibial osteotomy is becoming increasingly popular but can be associated with unintentional posterior tibial slope (PTS) increase and subsequent anterior cruciate ligament (ACL) degeneration. This study quantified the effect of increasing PTS on knee kinematics and in situ forces in the native ACL. A robotic testing system was used to apply external loads from full extension to 90° flexion to seven human cadaveric knees: (1) 200 N axial compressive load, (2) 5 Nm internal tibial + 10 Nm valgus torque, and (3) 5 Nm external tibial + 10 Nm varus torque. Kinematics and in situ forces in the ACL were acquired for the native and increased PTS state. Increasing PTS resulted in increased anterior tibial translation at 30° (1.8 mm), 60° (1.7 mm), and 90° (0.9 mm) flexion and reduced in situ force in the ACL at 30° (57.6%), 60° (69.8%), and 90° (75.0%) flexion in response to 200 N axial compressive load. In response to 5 Nm internal tibial + 10 Nm valgus torque, there was significantly less (39.0%) in situ force in the ACL at 90° flexion in the increased compared with the native PTS state. Significantly less in situ force in the ACL at 60° (62.8%) and 90° (67.0%) flexion was observed in the increased compared with the native PTS state in response to 5 Nm external tibial + 10 Nm varus torque. Increasing PTS affects knee kinematics and results in a reduction of in situ forces in the native ACL during compressive and rotatory loads at flexion angles exceeding 30°. In a controlled laboratory setting PTS increase unloads the ACL, affecting its natural function.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Cadáver , Articulación de la Rodilla/fisiología , Tibia/cirugía , Rango del Movimiento Articular , Fenómenos Biomecánicos/fisiología , Torque , Rotación
2.
J Orthop Res ; 40(1): 87-94, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33325047

RESUMEN

Statistical shape modeling was employed to assess three-dimensional (3D) bony morphology between distal femurs and proximal tibiae of anterior cruciate ligament (ACL) injured knees, the contralateral uninjured knees of ACL injured subjects, and knees with no history of injury. Surface models were created by segmenting bone from bilateral computed-tomography scans of 20 subjects of their ACL injured knees and non-injured contralateral knees, and 20 knees of control subjects with no history of a knee injury. Correspondence particles were placed on each surface, and a principal component analysis determined modes of variation in the positions of the correspondence particles describing anatomical variation. ANOVAs assessed the statistical differences of 3D bony morphological features with main effects of injury state and sex. ACL injured knees were determined to have a more lateral femoral mechanical axis and a greater angle between the long axis and condylar axis of the femur. A smaller anterior-posterior dimension of the lateral tibial plateau was also associated with ACL injured knees. Results of this study demonstrate that there are more bony morphological features predisposing individuals for ACL injury than previously established. These bony morphological parameters may cause greater internal and valgus torques increasing stresses in the ACL. No differences were determined between the ACL injured knees and their uninjured contralateral knees demonstrating that knees of ACL injured individuals are at similar risk for injury. Further understanding of the effect of bony morphology on the risk for ACL injury could improve individualized ACL injury treatment and prevention.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Fémur/anatomía & histología , Fémur/diagnóstico por imagen , Humanos , Articulación de la Rodilla/anatomía & histología , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tibia/diagnóstico por imagen
3.
J Biomech ; 139: 110857, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34809996

RESUMEN

Anterolateral capsule injury, often concomitant with anterior cruciate ligament (ACL) injuries, may result in high-grade rotatory instability. Lateral extraarticular tenodesis (LET) is sometimes added to ACL reconstruction to address this instability. However, LET is a non-anatomic procedure and concerns regarding increased tibiofemoral contact pressure and reduced internal rotation exist for some individuals which may be due to their tibiofemoral bony morphology. Therefore, the objective of this study was to analyze the effect of bony morphology on knee kinematic and contact pressure before and after anterolateral capsule injury and LET. A (1) 134-N anterior tibial load with 200-N axial compression and (2) a 7-Nm internal torque with a 200-N axial compression were applied to cadaveric knees (n = 8) using a 6 degree-of-freedom robotic testing system. Tibiofemoral bony morphology was captured with computed tomography scans and analyzed using 3D statistical shape modeling. Kinematics at each state were correlated with the results from the statistical shape model. Two femoral and three tibial modes of variation correlated with kinematic and contact pressure data before and after anterolateral capsule injury and LET. A decreased lateral tibial plateau elevation correlated with greater internal rotation and anterior tibial translation after anterolateral capsule deficiency and LET. Decreased notch width correlated with decreased contact area after anterolateral capsule deficiency and LET demonstrating it as a risk factor for ACL injury. The results of this study demonstrate that bony morphology if properly understood, could help improve the efficacy of LET procedures and that bony morphology has different effects after injury and repair.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Tenodesis , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Fenómenos Biomecánicos , Cadáver , Humanos , Inestabilidad de la Articulación/cirugía , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Tenodesis/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA