Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 53(22): 13081-13087, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31658416

RESUMEN

Iron (Fe) oxides in soils are strong sorbents for environmentally important compounds like soil organic matter (SOM) or phosphate, while sorption under field conditions is still poorly understood. We installed polyvinyl chloride plastic bars which have been coated either with synthetic Fe or manganese (Mn) oxides for 30 days in a redoximorphic soil. A previous study revealed the formation of newly formed ("natural") Fe oxides along the Mn oxide coatings. This enables us to differentiate between sorption occurring onto the surfaces of synthetic versus natural Fe oxides. After removal of the bars, they were analyzed by nanoscale secondary ion mass spectrometry (NanoSIMS) to study the distribution of Fe (56Fe16O-), SOM (12C14N-), and phosphorus (31P16O2-) at the microscale. Image analysis of individual Fe oxide particles revealed a close association of Fe, SOM, and P resulting in coverage values up to 71%. Furthermore, ion ratios between sorbent (56Fe16O-) and sorbate (12C14N- and 31P16O2-) were smaller along the natural oxides when compared with those for synthetic Fe oxides. We conclude that both natural and synthetic Fe oxides rapidly sequester SOM and P (i.e., within 30 days) but that newly, natural formed Fe oxides sorbe more SOM and P than synthetic Fe oxides.


Asunto(s)
Fosfatos , Suelo , Adsorción , Hierro , Óxidos
2.
Rapid Commun Mass Spectrom ; 32(8): 619-628, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29465799

RESUMEN

RATIONALE: Aluminium (Al)-substituted goethite is ubiquitous in soils and sediments. The extent of Al-substitution affects the physicochemical properties of the mineral and influences its macroscale properties. Bulk analysis only provides total Al/Fe ratios without providing information with respect to the Al-substitution of single minerals. Here, we demonstrate that nanoscale secondary ion mass spectrometry (NanoSIMS) enables the precise determination of Al-content in single minerals, while simultaneously visualising the variation of the Al/Fe ratio. METHODS: Al-substituted goethite samples were synthesized with increasing Al concentrations of 0.1, 3, and 7 % and analysed by NanoSIMS in combination with established bulk spectroscopic methods (XRD, FTIR, Mössbauer spectroscopy). The high spatial resolution (50-150 nm) of NanoSIMS is accompanied by a high number of single-point measurements. We statistically evaluated the Al/Fe ratios derived from NanoSIMS, while maintaining the spatial information and reassigning it to its original localization. RESULTS: XRD analyses confirmed increasing concentration of incorporated Al within the goethite structure. Mössbauer spectroscopy revealed 11 % of the goethite samples generated at high Al concentrations consisted of hematite. The NanoSIMS data show that the Al/Fe ratios are in agreement with bulk data derived from total digestion and demonstrated small spatial variability between single-point measurements. More advantageously, statistical analysis and reassignment of single-point measurements allowed us to identify distinct spots with significantly higher or lower Al/Fe ratios. CONCLUSIONS: NanoSIMS measurements confirmed the capacity to produce images, which indicated the uniform increase in Al-concentrations in goethite. Using a combination of statistical analysis with information from complementary spectroscopic techniques (XRD, FTIR and Mössbauer spectroscopy) we were further able to reveal spots with lower Al/Fe ratios as hematite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA