RESUMEN
Viticulture plays an important role in generating income for small farms globally. Historically, vineyards use large quantities of phytosanitary products, such as Bordeaux mixture [Ca(OH)2 + CuSO4], to control plant diseases. These products result in the accumulation of copper (Cu) in the soil and increases the risk of transfer to water bodies. Thus, it is important to evaluate whether the presence of Cu-bearing particles in water is toxic to aquatic fauna. This study conducted chemical, mineralogical, and particle size evaluations on water samples and sediments collected from a watershed predominantly cultivated with old vineyards. The proportion of Cu-rich nanoparticles (<10 nm) in the sediment was ~27%. We exposed zebrafish to different dilutions of water and sediment samples that collected directly from the study site (downstream river) under laboratory conditions. Then, we evaluated their exploratory behavior and the stress-related endocrine parameter, whole-body cortisol. We also carried out two experiments in which zebrafish were exposed to Cu. First, we determined the median lethal concentration (LC50-96 h) of Cu and then assessed whether Cu exposure results in effects similar to those associated with exposure to the water and sediment samples collected from the study site. The water and sediment samples directly impacted the exploratory behavior of zebrafish, showing clear anxiety-like behavioral phenotype and stress in terms of cortisol increase (during the second rain event). The Cu exposure did not mimic the same behavioral changes triggered by the water and sediment samples, although it had caused similar stress in the fish. Our results highlight that even at low concentrations, the water and sediment samples from vineyard watershed runoff were able to induce behavioral and endocrine changes that may harm the ecological balance of an aquatic environment.