Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33298543

RESUMEN

Human herpesvirus 6A (HHV-6A) and HHV-6B use different cellular receptors, human CD46 and CD134, respectively and have different cell tropisms although they have 90% similarity at the nucleotide level. An important feature that characterizes HHV-6A/6B is the glycoprotein H (gH)/gL/gQ1/gQ2 complex (a tetramer) that each virus has specifically on its envelope. Here, to determine which molecules in the tetramer contribute to the specificity for each receptor, we developed a cell-cell fusion assay system for HHV-6A and HHV-6B that uses the cells expressing CD46 or CD134. With this system, when we replaced the gQ1 or gQ2 of HHV-6A with that of HHV-6B in the tetramer, the cell fusion activity mediated by glycoproteins via CD46 was lower than that done with the original-type tetramer. When we replaced the gQ1 or the gQ2 of HHV-6A with that of HHV-6B in the tetramer, the cell fusion mediated by glycoproteins via CD134 was not seen. In addition, we generated two types of C-terminal truncation mutants of HHV-6A gQ2 (AgQ2) to examine the interaction domains of HHV-6A gQ1 (AgQ1) and AgQ2. We found that amino acid residues 163 to 185 in AgQ2 are important for interaction of AgQ1 and AgQ2. Finally, to investigate whether HHV-6B gQ2 (BgQ2) can complement AgQ2, an HHV-6A genome harboring BgQ2 was constructed. The mutant could not produce an infectious virus, indicating that BgQ2 cannot work for the propagation of HHV-6A. These results suggest that gQ2 supports the tetramer's function, and the combination of gQ1 and gQ2 is critical for virus propagation.IMPORTANCE Glycoprotein Q2 (gQ2), an essential gene for virus propagation, forms a heterodimer with gQ1. The gQ1/gQ2 complex has a critical role in receptor recognition in the gH/gL/gQ1/gQ2 complex (a tetramer). We investigated whether gQ2 regulates the specific interaction between the HHV-6A or -6B tetramer and CD46 or CD134. We established a cell-cell fusion assay system for HHV-6A/6B and switched the gQ1 or gQ2 of HHV-6A with that of HHV-6B in the tetramer. Although cell fusion was induced via CD46 when gQ1 or gQ2 was switched between HHV-6A and -6B, the activity was lower than that of the original combination. When gQ1 or gQ2 was switched in HHV-6A and -6B, no cell fusion was observed via CD134. HHV-6B gQ2 could not complement the function of HHV-6A's gQ2 in HHV-6A propagation, suggesting that the combination of gQ1 and gQ2 is critical to regulate the specificity of the tetramer's function for virus entry.

4.
Microbiol Immunol ; 64(10): 703-711, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32827324

RESUMEN

Human herpesvirus 6A (HHV-6A) is a member of the genus Roseolovirus and the subfamily Betaherpesvirinae. It is similar to and human cytomegalovirus (HCMV). HHV-6A encodes a 41 kDa nuclear phosphoprotein, U27, which acts as a processivity factor in the replication of the viral DNA. HHV-6A U27 has 43% amino acid sequence homology with HCMV UL44, which is important for DNA replication. A previous study on HHV-6A U27 revealed that it greatly increases the in vitro DNA synthesis activity of HHV-6A DNA polymerase. However, the role of U27 during the HHV-6A virus replication process remains unclear. In this study, we constructed a U27-deficient HHV-6A mutant (HHV-6ABACU27mut) with a frameshift insertion at the U27 gene using an HHV-6A bacterial artificial chromosome (BAC) system. Viral reconstitution from the mutant BAC DNA was not detected, in contrast to the wild type and the revertant from the U27 mutant. This suggests that U27 plays a critical role in the life cycle of HHV-6A.


Asunto(s)
Herpesvirus Humano 6/genética , Proteínas Virales/genética , Replicación Viral/genética , Línea Celular , Replicación del ADN/genética , ADN Viral/genética , Exantema Súbito/virología , Fiebre/virología , Mutación del Sistema de Lectura/genética , Genoma Viral/genética , Células HEK293 , Humanos
5.
PLoS Pathog ; 16(7): e1008609, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32702057

RESUMEN

Primary infection of human herpesvirus 6B (HHV-6B) occurs in infants after the decline of maternal immunity and causes exanthema subitum accompanied by a high fever, and it occasionally develops into encephalitis resulting in neurological sequelae. There is no effective prophylaxis for HHV-6B, and its development is urgently needed. The glycoprotein complex gH/gL/gQ1/gQ2 (called 'tetramer of HHV-6B') on the virion surface is a viral ligand for its cellular receptor human CD134, and their interaction is thus essential for virus entry into the cells. Herein we examined the potency of the tetramer as a vaccine candidate against HHV-6B. We designed a soluble form of the tetramer by replacing the transmembrane domain of gH with a cleavable tag, and the tetramer was expressed by a mammalian cell expression system. The expressed recombinant tetramer is capable of binding to hCD134. The tetramer was purified to homogeneity and then administered to mice with aluminum hydrogel adjuvant and/or CpG oligodeoxynucleotide adjuvant. After several immunizations, humoral and cellular immunity for HHV-6B was induced in the mice. These results suggest that the tetramer together with an adjuvant could be a promising candidate HHV-6B vaccine.


Asunto(s)
Exantema Súbito/inmunología , Vacunas contra Herpesvirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Exantema Súbito/virología , Herpesvirus Humano 6 , Humanos , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA