Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 222(Pt A): 736-749, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174862

RESUMEN

For environmental preservation, it is crucial to effectively remove organic waste from water. Several approaches have been put forth, but photocatalysis stands out as a quick and effective solution. In this study, some hybrid polymeric structures that were created by photopolymerizing cellulose acetate/castor oil urethane methacrylates with embedded CeO2 nanoparticles (NPs) and in situ photogenerated noble metal nanoparticles (Ag, Au, Pd) are characterized, and photochemically thoroughly evaluated. The effective modification of cellulose acetate with urethane methacrylate sequences and the degree of functionalization were first observed using 1H NMR and FTIR spectra. Additionally, scanning and transmission electron microscopy, X-ray diffraction, FT-IR and UV-visible spectroscopy were utilized to analyse the resultant nanocomposites. The homogeneous dispersion of CeO2 NPs (10-40 nm) into an organic matrix with the suitable functionalities, namely urethane and hydroxyl groups, favour the interfacial charge transfer reducing the Eg up to 2.85 eV. Moreover, noble metal nanoparticles (5-15 nm), such as Ag, Au and Pd introduction in nanocomposites, significantly lowered the Eg: 2.1 eV for CeAg samples, 1.7 eV for CeAu films and 1.5 eV for CePd films, respectively. This opens up new avenues for the creation of flexible cellulose-based photocatalysts that are active in visible light.


Asunto(s)
Nanopartículas del Metal , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Luz , Celulosa/química , Uretano
2.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564111

RESUMEN

Cerium oxide (CeO2) nanoparticles were synthesized with a chemical precipitation method in different experimental conditions using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as a precursor, modifying the solution pH, the reaction time, and Co atoms as dopants, in order to tune the band gap energy values of the prepared samples. The physical characteristics of the synthesized ceria nanoparticles were evaluated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis analyses and photoluminescence measurements. XRD data revealed a pure cubic fluorite structure of CeO2 NPs, the estimation of crystallite sizes by Scherrer's formula indicates the formation of crystals with dimensions between 11.24 and 21.65 nm. All samples contain nearly spherical CeO2 nanoparticles, as well as cubic, rhomboidal, triangular, or polyhedral nanoparticles that can be identified by TEM images. The optical investigation of CeO2 samples revealed that the band gap energy values are between 3.18 eV and 2.85 eV, and, after doping with Co atoms, the Eg of samples decreased to about 2.0 eV. In this study, we managed to obtain CeO2 NPs with Eg under 3.0 eV by only modifying the synthesis parameters. In addition, by doping with Co ions, the band gap energy value was lowered to 2.0 eV. This aspect leads to promising results that provide an encouraging approach for future photocatalytic investigations.

3.
Materials (Basel) ; 13(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781645

RESUMEN

Hybrid polymeric materials, due to the unique combination of properties that can be obtained by the convenient variation of organic and inorganic components, represent an attractive alternative for many applications, especially photocatalysis. Herein, we report the preparation of nanocomposite films containing functionalized ZnO nanoparticles, as well as in situ photogenerated noble metal nanoparticles (Ag, Au, Pd), for the achieving of materials with enhanced photocatalytic activity under visible light. The flexible free-standing nanocomposite films were synthesized by photopolymerization of a monomer mixture (silane castor oil urethane dimethacrylate and polypropylene oxide urethane dimethacrylate) in the presence of a Irgacure 819 photoinitiator. The efficiency of ZnO NPs functionalization was established by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis, while the polymer composites were characterized by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy to evidence the formation, size and distribution of the nanoparticles inside the photocrosslinked matrix. To establish the photocatalytic capacity of nanocomposite films, the decomposition of various pollutants (methyl orange, phenol, metronidazole) was monitored under visible light irradiation, the best results being obtained for Au/ZnO film. Also, the advantage of immobilizing the catalysts in a polymeric support and its recycling ability without a significant decrease in photocatalytic efficiency was analysed.

4.
J Biomater Sci Polym Ed ; 25(8): 749-65, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24701975

RESUMEN

To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.


Asunto(s)
Materiales Dentales/química , Leucina/química , Metacrilatos/química , Procesos Fotoquímicos , Polimerizacion , Polímeros/química , Polímeros/síntesis química , Técnicas de Química Sintética , Química Farmacéutica , Succinatos/química , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA