Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol ; 99(4): 1106-1114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36562220

RESUMEN

The effect of the toxicant 2,3',4,4',6-pentachlorobiphenyl (PCB-119) on the growth, chlorophyll content, and PSII activity of C. sorokiniana cells was investigated. A strong negative effect of the toxicant was observed at PCB concentration of 0.05 µg mL-1 , when culture growth ceased, chlorophyll strongly bleached, and cell death occurred. The use of original highly sensitive fluorimeter to measure three types of high-resolution chlorophyll fluorescence kinetics allowed us to detect an initial dramatic decrease in the activity of primary photosynthetic reactions, followed by their almost complete recovery at the end of the incubation period when most cells were dead. The study of the distribution of individual cells in culture in terms of Fv /Fm parameter, which reflects the quantum yield of PSII photochemistry, revealed the existence of 2-3% of cells retaining high Fv /Fm (>0.7) in the presence of the toxicant. The treated cultures were able to resume growth after prolonged incubation in fresh medium. The high sensitivity fluorescence methods used made it possible to identify stress-resistant cells which maintain high photosynthetic activity in the presence of lethal doses of toxic substances; these cells provide recovery of the population after stress.


Asunto(s)
Chlorella , Microalgas , Microalgas/química , Microalgas/metabolismo , Chlorella/metabolismo , Fotosíntesis , Clorofila/metabolismo , Aclimatación
2.
Biophys Rev ; 14(4): 985-1004, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36124262

RESUMEN

The paper presents the results of recent work at the Department of Biophysics of the Biological Faculty, Lomonosov Moscow State University on the kinetic and multiparticle modeling of processes in the photosynthetic membrane. The detailed kinetic models and the rule-based kinetic Monte Carlo models allow to reproduce the fluorescence induction curves and redox transformations of the photoactive pigment P700 in the time range from 100 ns to dozens of seconds and make it possible to reveal the role of individual carriers in their formation for different types of photosynthetic organisms under different illumination regimes, in the presence of inhibitors, under stress conditions. The fitting of the model curves to the experimental data quantifies the reaction rate constants that cannot be directly measured experimentally, including the non-radiative thermal relaxation reactions. We use the direct multiparticle models to explicitly describe the interactions of mobile photosynthetic carrier proteins with multienzyme complexes both in solution and in the biomembrane interior. An analysis of these models reveals the role of diffusion and electrostatic factors in the regulation of electron transport, the influence of ionic strength and pH of the cellular environment on the rate of electron transport reactions between carrier proteins. To describe the conformational intramolecular processes of formation of the final complex, in which the actual electron transfer occurs, we use the methods of molecular dynamics. The results obtained using kinetic and molecular models supplement our knowledge of the mechanisms of organization of the photosynthetic electron transport processes at the cellular and molecular levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA