Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 8: 692668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179098

RESUMEN

A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.

2.
Chembiochem ; 13(5): 732-9, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22408059

RESUMEN

Selective isotopic unlabeling of proteins can provide important residue-type information as well as reduce congestion of NMR spectra. However, metabolic scrambling often complicates the final isotope-labeling pattern. Here, an array of metabolic precursors is used to perform robust, residue-specific unlabeling of proteins. The resulting isotopic-labeling patterns are predictable and nicely complement NMR experiments that differentiate residue types. This approach has widespread applications, but it is particularly relevant for proteins that lack sequence complexity or a defined tertiary structure.


Asunto(s)
Aminoácidos/química , Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Resonancia Magnética Nuclear Biomolecular/métodos , Ribonucleasa III/química , Ubiquitina/química , Aminoácidos/metabolismo , Isótopos de Carbono , Marcaje Isotópico , Estructura Molecular , Isótopos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA