Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6115, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480825

RESUMEN

Appropriate and rational management of the energy produced by renewable energy sources is one of the most urgent challenges for the global energy sector. This paper is devoted to the systematic experimental and theoretical studies of a modular solar charger based on silicon and dye-sensitized solar cells as an energy source, and supercapacitor as an energy bank. Using the MathCAD program, I-V characteristics were plotted for both a single cell and a photovoltaic module based on various series-to-parallel connections. To assess the surface quality of the modules, additional tests using a thermal imaging camera were carried out as well. The charging characteristics of the supercapacitor (two series-connected cells with a capacity of 300 F), were determined depending on the parameters of the photovoltaic module as well as considering the influence of the voltage balancing system and control system. The charge, discharge, and recharge characteristics were carefully analyzed to optimize the operating conditions, i.e. the number of photovoltaic cells. To evaluate the stability of parameters with operation time, and their temperature dependence (17-65 °C), solar modules were tested for ten days under Central European weather conditions. Importantly, a comparative analysis of solar chargers based on different configurations of photovoltaic cells showed an increase in electrical parameters for the proposed modular inorganic-organic concept compared to dye-sensitized solar cells produced alone on a rigid substrate. Finally, preliminary assumptions (requirements) were developed regarding the electrical and optical parameters for new dye-sensitized solar cells that could be used in the innovative solar charger instead of silicon cells along with a predicted role of artificial intelligence (AI) in these devices.

2.
RSC Adv ; 12(30): 19154-19170, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35865594

RESUMEN

The aim of this study has been to examine in depth three siloxane resins (R1-R3) and two silanes (S1-S2) as hydrophobic self-cleaning layers for silicon and dye-sensitized solar cells. Herein, we focused on creating an active self-cleaning surface system using a combination of material and technical aspects. Siloxane resins were obtained via the hydrolytic polycondensation of methyltrimethoxysilane (R1) or the hydrolytic co-polycondensation of methyltrimethoxysilane, isobutyltrimethoxysilane and 3-methacroiloxypropyltrimethoxysilane (R2) or methyltrimethoxysilane n-octyltriethoxysilane and 3-methacroiloxypropyltrimethoxysilane (R3) under alkaline conditions using tetrahydrofuran. All layers under study did not significantly affect the original optical properties of the glass support, confirming that all these compounds can be used as protective layers on glass surfaces. The hydrophobic nature of formed layers was confirmed by static water contact angle measurements for hexane- and/or dibutyl ether-based starting solutions at various concentrations. The structural defects in created layers were studied via atomic force microscopy and thermal imaging, revealing RMS roughness (R q) values in the range of 0.76-5.25 nm, which varied for different materials. The current-voltage curves of different hydrophobic coatings showed conductive behaviour, demonstrating that principally non-conductive coatings mixed with silver conductive paste showed a certain level of conductivity. This finding suggests that the hydrophobic coating resembles a porous structure, enabling the formation of electrically conductive pathways. Finally, the influence of the presence of a coating layer on silicon and dye-sensitized solar cells was studied, and no negative effect on their photovoltaic parameters was observed after the durability test.

3.
Sensors (Basel) ; 20(14)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708778

RESUMEN

This paper presents the investigations on the improvement of search object detection during search and rescue (SAR) action at sea using thermal imaging and radar sensors. The introduction of new materials in the construction of lifesaving appliances increasing their detectability has been studied for the selected example of a pneumatic life raft. The research was based on laboratory tests and open sea trials. The presented experimental investigations on the new materials that can be used for pneumatic life raft construction showed the enhancement of its thermal and radar signatures, which directly affect life raft detectability and influence reliability of SAR action and probability of success (POS). The improved detectability of a life raft related to the time to survive of a person in the water (PIW) allowed to present the modified search pattern for both PIW and life raft, significantly increasing POS.

4.
Polymers (Basel) ; 12(3)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143387

RESUMEN

Poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS) water and toluene solutions were investigated in detail, taking into consideration their stability, wettability, transparency, and electrochemical properties, along with change polarity caused by dopant. As dopant, methanol, ethanol, and isopropanol were used with different dipole moments (1.70, 1.69, and 1.66 D) and dielectric constants (33.0, 24.5, and 18.0). Three techniques, i.e., spin coating, doctor blade coating, and spray coating, were employed to created PEDOT:PSS layers on glass, glass/indium tin oxide (ITO), and glass/fluorine-doped tin oxide (FTO) substrates with optimized technical parameters for each used equipment. All used PEDOT:PSS water and toluene solutions demonstrated good wetting properties with angles below 30° for all used surfaces. Values of the energy bandgap (Eg) of PEDOT:PSS investigated by cyclic voltammetry (CV) in solution showed increase energy Eg along with addition of alcohol to the mixture, and they were found in the range of 1.20 eV to 2.85 eV. The opposite tendency was found for the Eg value of the PEDOT:PSS layer created from water solution. The storage effect on PEDOT:PSS layers detected by CV affected only the lowest unoccupied molecular orbital (LUMO) level, thereby causing changes in the energy bandgap. Finally, simple devices were constructed and investigated by infrared (IR) thermographic camera to investigate the surface defects on the created PEDOT:PSS layers. Our study showed that a more stable PEDOT:PSS layer without pin-holes and defects can be obtained from water and toluene solutions with isopropanol via the spin coating technique with an optimal speed of 3000 rpm and time of 90 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA