Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(35): 46937-46944, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163249

RESUMEN

Precise micropatterning on three-dimensional (3D) surfaces is desired for a variety of applications, from microelectronics to metamaterials, which can be realized by transfer printing techniques. However, a nontrivial deficiency of this approach is that the transferred microstructures are adsorbed on the target surface with weak adhesion, limiting the applications to external force-free conditions. We propose a scalable "photolithography-transfer-plating" method to pattern stable and durable microstructures on 3D metallic surfaces with precise dimension and location control of the micropatterns. Surface patterning on metallic parts with different metals and isotropic and anisotropic curvatures is showcased. This method can also fabricate hierarchical structures with nanoscale vertical and microscale horizontal dimensions. The plated patterns are stable enough to mold soft materials, and the structure durability is validated by 24 h thermofluidic tests. We demonstrate micropatterned nickel electrodes for oxygen evolution reaction acceleration in hydrogen production, showing the potential of micropatterned 3D metallic surfaces for energy applications.

2.
J Mater Chem A Mater ; 12(11): 6412-6425, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38481960

RESUMEN

Porous binder-free carbon electrodes were obtained by impregnating cellulose filter papers with phenolic resin through soft-salt template synthesis and thermal pyrolysis. These self-standing electrodes were used directly in a supercapacitor device. To understand the impacts of filter paper (FP) thickness on carbon filter paper (CFP) morphology, porosity, and surface functionalities, five different materials were examined. The CFP electrode thickness was adjusted linearly with the FP thickness to produce electrodes ranging from 100 to ∼800 µm. As the thickness of the CFP increased, there was an increase in the specific surface area and oxygen-based functionalities. Electrochemical testing in a 1 M KOH aqueous electrolyte demonstrated that electrode thickness played a key role in electrochemical capacitor (EC) performance, i.e., capacitance enhances linearly when the electrode becomes thinner. For low thicknesses (<280 µm), the capacitance and rate capability decreased slightly with increasing thickness; for high thicknesses, the performance drastically degraded despite the high specific surface area and oxygen surface functionalities. This effect was amplified at high regimes, indicating that high electrode thicknesses and fiber diameters limited electrolyte diffusion in the applied synthesis conditions. Thus, the high material porosity was inaccessible to ion adsorption. Consequently, thinner electrodes showed the highest capacitance (197 F g-1 at 0.1 A g-1) and rate capability (81%) values, exceeding those of their traditional binder-electrode counterparts prepared under similar conditions. Finally, for alkali metal hydroxide solutions, 1 M KOH exhibited a cation match with the salt template (KCl), while CsOH achieved additional capacitance retention (88% at 10 A g-1). Complex ion adsorption mechanisms were observed through a quartz crystal microbalance.

3.
ACS Appl Mater Interfaces ; 15(41): 48826-48837, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37812816

RESUMEN

Natural salinity gradients are a promising source of so-called "blue energy", a renewable energy source that utilizes the free energy of mixing for power generation. One promising blue energy technology that converts these salinity gradients directly into electricity is reverse electrodialysis (RED). Used at its full potential, it could provide a substantial portion of the world's electricity consumption. Previous theoretical and experimental works have been done on optimizing RED devices, with the latter often focusing on precious and expensive metal electrodes. However, in order to rationally design and apply RED devices, we need to investigate all related transport phenomena─especially the fluidics of salinity gradient mixing and the redox electrolyte at various concentrations, which can have complex intertwined effects─in a fully functioning and scalable system. Here, guided by fundamental electrochemical and fluid dynamics theories, we work with an iron-based redox electrolyte with carbon electrodes in a RED device with tunable microfluidic environments and study the fundamental effects of electrolyte concentration and flow rate on the potential-driven redox activity and power output. We focus on optimizing the net power output, which is the difference between the gross power output generated by the RED device and the pumping power input, needed for salinity gradient mixing and redox electrolyte reactions. We find through this holistic approach that the electrolyte concentration in the electrode rinse solution is crucial for increasing the electrical current, while the pumping power input depends nonlinearly on the membrane separation distance. Finally, from this understanding, we designed a five cell-pair (CP) RED device that achieved a net power density of 224 mW m-2 CP-1, a 60% improvement compared to the nonoptimized case. This study highlights the importance of the electrode rinse solution fluidics and composition when rationally designing RED devices based on scalable carbon-based electrodes.

4.
ACS Appl Mater Interfaces ; 15(19): 23860-23874, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37142329

RESUMEN

A comprehensive comparison of electrochemical capacitors (ECs) with various aqueous alkali metal sulfate solutions (Li2SO4, Na2SO4, Rb2SO4, and Cs2SO4) is reported. The EC with a less conductive 1 mol L-1 Li2SO4 solution demonstrates the best long-term performance (214 h floating test) compared to the EC with a highly conductive 1 mol L-1 Cs2SO4 solution (200 h). Both the positive and negative EC electrodes are affected by extensive oxidation and hydrogen electrosorption, respectively, during the aging process, as proven by the SBET fade. Interestingly, carbonate formation is observed as a minor cause of aging. Two strategies for optimizing sulfate-based ECs are proposed. In the first approach, Li2SO4 solutions with the pH adjusted to 3, 7, and 11 are investigated. The sulfate solution alkalization inhibits subsequent redox reactions, and as a result, EC performance is successfully enhanced. The second approach exploits so-called bication electrolytic solutions based on a mixture of Li2SO4 and Na2SO4 at an equal concentration. This concept allows the operational time to be significantly prolonged, up to 648 h (+200% compared to 1 mol L-1 Li2SO4). Therefore, two successful pathways for improving sulfate-based ECs are demonstrated.

5.
ACS Appl Mater Interfaces ; 13(2): 2584-2599, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33417770

RESUMEN

Various alkali metal (Li+, Na+, K+, Rb+, and Cs+) chlorides with Pluronic F127 were used as a soft-salt template for tuning the textural and structural properties of carbon. Highly conductive metal hydroxide solutions, where the cations are the same as those in the salt template, have been used as electrolytes. By increasing the size of the cation in the template, the textural properties of carbon, such as the specific surface area, micropore volume, and pore size, were remarkably enhanced. It directly translates to an increase in the specific capacitance of the electrode material. For a constant current charge/discharge at 0.1 A g-1, the electrode composed of LiCl-T and operating with 1 mol L-1 LiOH demonstrates the capacitance of 124 F g-1, whereas CsCl-T with the same electrolyte has a capacitance of 216 F g-1. Moreover, the materials show the highest capacitance retention (up to 75%) vs. the current regime applied when the cation used during synthesis matches the cation present in the electrolyte (i.e., LiCl-T with LiOH). Interestingly, capacitance normalized by specific surface area has been found to be the highest when LiOH solution is applied as an electrolyte. Thus, for this metric, the size of ions seems to be a crucial parameter. The importance of mesoporosity is highlighted as well by using materials with a similar fraction of micropores and with or without mesopores. Briefly, the presence of mesopore fraction proved to be essential for improved capacity retention (69% vs. 30%). Besides textural properties, the graphitization degree impacts the electrochemical performance as well. It increases among the samples, in accordance with cation-π binding energy, e.g., LiCl-T is the most "graphitic-like" material and CsCl-T is the most disordered. Thus, the more graphitic-like materials demonstrate higher rate capability and cycle stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA