Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biol Cell ; 112(1): 22-37, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31789463

RESUMEN

BACKGROUND: The centrosome regulates cell spatial organisation by controlling the architecture of the microtubule (MT) cytoskeleton. Conversely, the position of the centrosome within the cell depends on cytoskeletal networks it helps organizing. In mammalian cells, centrosome positioning involves a population of MT stably anchored at centrioles, the core components of the centrosome. An MT-anchoring complex containing the proteins ninein and Cep170 is enriched at subdistal appendages (SAP) that decorate the older centriole (called mother centriole) and at centriole proximal ends. Here, we studied the role played at the centrosome by hVFL3/CCDC61, the human ortholog of proteins required for anchoring distinct sets of cytoskeletal fibres to centrioles in unicellular eukaryotes. RESULTS: We show that hVFL3 co-localises at SAP and at centriole proximal ends with components of the MT-anchoring complex, and physically interacts with Cep170. Depletion of hVFL3 increased the distance between mother and daughter centrioles without affecting the assembly of a filamentous linker that tethers the centrioles and contains the proteins rootletin and C-Nap1. When the linker was disrupted by inactivating C-Nap1, hVFL3-depletion exacerbated centriole splitting, a phenotype also observed following depletion of other SAP components. This supported that hVFL3 is required for SAP function, which we further established by showing that centrosome positioning is perturbed in hVFL3-depleted interphase cells. Finally, we found that hVFL3 is an MT-binding protein. CONCLUSIONS AND SIGNIFICANCE: Together, our results support that hVFL3 is required for anchoring MT at SAP during interphase and ensuring proper centrosome cohesion and positioning. The role of the VFL3 family of proteins thus appears to have been conserved in evolution despite the great variation in the shape of centriole appendages in different eukaryotic species.


Asunto(s)
Proteínas Portadoras/metabolismo , Centriolos , Centrosoma , Tubulina (Proteína)/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Línea Celular , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cilios/ultraestructura , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Humanos , Microscopía Electrónica , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , ARN Interferente Pequeño
2.
PLoS One ; 8(10): e76140, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124537

RESUMEN

The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways.


Asunto(s)
Autofagia/fisiología , Proteínas Musculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Autofagia/genética , Diferenciación Celular/fisiología , Línea Celular , Ratones , Proteínas Musculares/genética , Fagosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Interferencia de ARN
3.
EMBO J ; 24(21): 3781-92, 2005 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-16237460

RESUMEN

It has been proposed that microtubules (MTs) participate in skeletal muscle cell differentiation. However, it is still unclear how this happens. To examine whether MTs could participate directly in the organization of thick and thin filaments into sarcomeres, we observed the concomitant reorganization and dynamics of MTs with the behavior of sarcomeric actin and myosin by time-lapse confocal microscopy. Using green fluorescent protein (GFP)-EB1 protein to label MT plus ends, we determined that MTs become organized into antiparallel arrays along fusing myotubes. Their dynamics and orientation was found to be different across the thickness of the myotubes. We observed fast movements of Dsred-myosin along GFP-MTs. Comparison of GFP-EB1 and Dsred-myosin dynamics revealed that myosin moved toward MT plus ends. Immuno-electron microscopy experiments confirmed that myosin was actually associated with MTs in myotubes. Finally, we confirmed that MTs were required for the stabilization of myosin-containing elements prior to incorporation into mature sarcomeres. Collectively, our results strongly suggest that MTs become organized into a scaffold that provides directional cues for the positioning and organization of myosin filaments during sarcomere formation.


Asunto(s)
Diferenciación Celular , Microtúbulos/fisiología , Músculo Esquelético/citología , Miosinas/metabolismo , Sarcómeros/ultraestructura , Actinas/metabolismo , Actinas/ultraestructura , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Microscopía Confocal , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Microtúbulos/ultraestructura , Modelos Biológicos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Miosinas/ultraestructura , Transporte de Proteínas , Tubulina (Proteína)/análisis
4.
J Cell Sci ; 115(Pt 23): 4469-82, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12414993

RESUMEN

Assembly of muscle sarcomeres is a complex dynamic process and involves a large number of proteins. A growing number of these have regulatory functions and are transiently present in the myofibril. We show here that the novel tubulin-associated RING/B-box protein MURF2 associates transiently with microtubules, myosin and titin during sarcomere assembly. During sarcomere assembly, MURF2 first associates with microtubules at the exclusion of tyrosinated tubulin. Then, MURF2-labelled microtubules associate transiently with sarcomeric myosin and later with A-band titin when non-striated myofibrils differentiate into mature sarcomeres. Finally, MURF2 labelled microtubules disappear from the sarcomere after the incorporation of myosin filaments and the elongation of titin. This suggests that the incorporation of myosin into nascent sarcomeres and the elongation of titin require an active, microtubule-dependent transport process and that MURF2-associated microtubules play a role in the alignment and extension of nascent sarcomeres. MURF2 is expressed in at least four isoforms, of which a 27 kDa isoform is cardiac specific. A C-terminal isoform is generated by alternative reading frame use, a novelty in muscle proteins. In mature cardiac sarcomeres, endogenous MURF2 can associate with the M-band, and is translocated to the nucleus. MURF2 can therefore act as a transient adaptor between microtubules, titin and nascent myosin filaments, as well as being involved in signalling from the sarcomere to the nucleus.


Asunto(s)
Microtúbulos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miofibrillas/metabolismo , Miosinas/metabolismo , Proteínas Quinasas/metabolismo , Actinas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Clonación Molecular , Conectina , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Musculares/genética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sarcómeros/metabolismo
5.
Mol Cell Biol ; 22(13): 4598-606, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12052869

RESUMEN

How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinasas Quinasa Quinasa PAM , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Proteínas ras/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Schizosaccharomyces/genética , Transducción de Señal , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA