Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125164

RESUMEN

This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.

2.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35012139

RESUMEN

The aim of our research was to investigate and optimise the main 3D printing process parameters that directly or indirectly affect the shape transformation capability and to determine the optimal transformation conditions to achieve predicted extent, and accurate and reproducible transformations of 3D printed, shape-changing two-material structures based on PLA and TPU. The shape-changing structures were printed using the FDM technology. The influence of each printing parameter that affects the final printability of shape-changing structures is presented and studied. After optimising the 3D printing process parameters, the extent, accuracy and reproducibility of the shape transformation performance for four-layer structures were analysed. The shape transformation was performed in hot water at different activation temperatures. Through a careful selection of 3D printing process parameters and transformation conditions, the predicted extent, accuracy and good reproducibility of shape transformation for 3D printed structures were achieved. The accurate deposition of filaments in the layers was achieved by adjusting the printing speed, flow rate and cooling conditions of extruded filaments. The shape transformation capability of 3D printed structures with a defined shape and defined active segment dimensions was influenced by the relaxation of compressive and tensile residual stresses in deposited filaments in the printed layers of the active material and different activation temperatures of the transformation.

3.
Sensors (Basel) ; 14(8): 13628-43, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25072347

RESUMEN

Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%-80% relative humidity (RH) at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%-90%). Two different types of capacitor sensors have been investigated: lateral (comb) type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID) chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag's IC to achieve UHF-RFID functionality with data logging capability.


Asunto(s)
Impresión/instrumentación , Capacidad Eléctrica , Diseño de Equipo/instrumentación , Humedad , Papel , Dispositivo de Identificación por Radiofrecuencia/métodos , Reciclaje , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA