Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(8): 4249-4265, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38348722

RESUMEN

In this work, we report the results of our investigations on the structural and luminescence properties of SiO2-LaF3:Pr3+ nano-glass-ceramics synthesized using the sol-gel method. Based on XRD, microscopic (TEM), and ATR-IR measurements, the crystallization of LaF3 nanocrystals favorably occupied by Pr3+ ions and overall transformations within the silicate sol-gel hosts dependent on heat-treatment conditions of the as-prepared amorphous xerogels were characterized. The fabricated oxyfluoride nano-glass-ceramics revealed the emissions within the greenish-blue (3P0,1 → 3H4, 3P0,1 → 3H5), reddish-orange (3P0,1 → 3H6, 1D2 → 3H4, 3P0 → 3F2,3), and NIR spectral scopes (1D2 → 3F4,1G4, 1G4 → 3H5, 3F3,4 → 3H4). Based on the luminescence spectra in the VIS range, the CIE chromaticity coordinates, correlated color temperatures (CCT), and color purities (CP) were calculated. The obtained results clearly indicate that the prepared Pr3+-doped sol-gel nano-glass-ceramics exhibit warm or neutral white light emissions with CCT values in the range from 2567 K to 3962 K. The lowest CP value was estimated at 12.8%, indicating that the fabricated samples are able to emit bright white light. Additionally, the NIR emissions cover E, S, C, and L bands, which are important for devices applicable in telecommunication technologies. For further characterization, the τ(3P0) and τ(1D2) decay times were estimated. It was established that the emissions from the 3P0 and the 1D2 excited states of Pr3+ ions, as well as the participation of cross-relaxation (CR) processes, are dependent on the size of crystallized LaF3 phase, distribution of optically active Pr3+ ions between amorphous and crystalline phase (determining the Pr3+-Pr3+ inter-ionic distances), and relative content of OH groups in the prepared sol-gel hosts.

2.
Materials (Basel) ; 16(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38138821

RESUMEN

LMA (Large Mode Area) optical fibers are presently under active investigation to explore their potential for generating laser action or broadband emission directly within the optical fiber structure. Additionally, a wide mode profile significantly reduces the power distribution density in the fiber cross-section, minimizing the power density, photodegradation, or thermal damage. Multi-stage deposition in the MCVD-CDT system was used to obtain the structural doping profile of the LMA fiber multi-ring core doped with Tm3+ and Tm3+/Ho3+ layer profiles. The low alumina content (Al2O3: 0.03wt%) results in low refractive index modification. The maximum concentrations of the lanthanide oxides were Tm2O3: 0.18wt % and Ho2O3: 0.15wt%. The double-clad construction of optical fiber with emission spectra in the eye-safe spectral range of (1.55-2.10 µm). The calculated LP01 Mode Field Diameter (MFD) was 69.7 µm (@ 2000 nm, and 1/e of maximum intensity), which confirms LMA fundamental mode guiding conditions. The FWHM and λmax vs. fiber length are presented and analyzed as a luminescence profile modification. The proposed structured optical fiber with a ring core can be used in new broadband optical radiation source designs.

3.
Opt Express ; 31(18): 28850-28858, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710695

RESUMEN

The near-infrared emission in fabricated low-phonon energy, gallo-germanate glass, and double-core optical fiber has been investigated. Broadband amplified spontaneous emission (ASE) was obtained in optical fiber with cores doped with: 1st - 0.2Er2O3 and 2nd - 0.5Yb2O3/0.4Tm2O3/0.05Ho2O3 as a result of the superposition of emission bands from both cores corresponding to the Er3+:4I13/2→4I15/2 (1st core) and Tm3+:3F4 → 3H6/Ho3+:5I7 → 5I8 (2nd core) transitions. The effect of fiber length and pump wavelength on the near-infrared amplified spontaneous emission (ASE) properties has been analyzed for 1 m and 5 m optical fiber. The widest emission bandwidth (355 nm - 3 dB level) was obtained for a 5 m length optical fiber pumped by a 940 nm laser.

4.
Sci Rep ; 13(1): 13963, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633975

RESUMEN

Double-clad optical fiber with a multi-ring core profile doped with thulium and holmium fabricated by Modified Chemical Vapor Deposition Chelate Doping Technology (MCVD-CDT) is presented. The measured Tm2O3 and Ho2O3 complexes' weight concentrations were 0.5% and 0.2% respectively. Numerical analyses show weakly guiding conditions and 42.2 µm of MFD LP01 at 2000 nm. The low NA numerical aperture (NA = 0.054) was obtained for the 20/250 µm core/cladding ratio optical fiber construction. The emission spectra in the range of 1.6-2.1 µm vs. the fiber length are presented. The full width at half maximum (FWHM) decreases from 318 to 270 nm for fiber lengths from 2 to 10 m. The presented fiber design is of interest for the development of new construction of optical fibers operating in the eye-safe spectral range.

5.
RSC Adv ; 13(18): 12386-12393, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091606

RESUMEN

In the current work, germanate phosphors Li2MgGeO4:Ln3+ (Ln = Pr, Tm) have been synthesized and then investigated using luminescence spectroscopy. The X-ray diffraction analysis demonstrate that ceramic compounds Li2MgGeO4 containing Pr3+ and Tm3+ ions crystallize in a monoclinic crystal lattice. Luminescence properties of Pr3+ and Tm3+ ions have been examined under different excitation wavelengths. The most intense blue emission band related to the 1D2 → 3F4 transition of Tm3+ is overlaps well with broad band located near 500 nm, which is assigned to F-type centers. These effects are not evident for Pr3+ ions. Ceramic phosphors Li2MgGeO4:Ln3+ (Ln = Pr, Tm) are characterized based on measurements of the excitation/emission spectra and their decays. The experimental results indicate that germanate ceramics Li2MgGeO4 doped with trivalent rare earth ions can be applied as inorganic phosphors emitting orange (Pr3+) or blue (Tm3+) light.

6.
Materials (Basel) ; 16(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36984018

RESUMEN

An investigation of fluoroindate glass and fiber co-doped with Yb3+/Er3+ ions as a potential temperature sensor was assessed using the fluorescence intensity ratio (FIR) technique. Analysis of thermally coupled levels (TCLs-2H11/2 and 4S3/2), non-thermally coupled levels (non-TCLs-4F7/2 and 4F9/2), and their combination were examined. Additionally, the luminescent stability of the samples under constant NIR excitation using different density power at three different temperatures was carried out. The obtained values of absolute sensitivity (0.003 K-1-glass, 0.0019 K-1-glass fiber 2H11/2 → 4S3/2 transition) and relative sensitivity (2.05% K-1-glass, 1.64% K-1-glass fiber 4F7/2 → 4F9/2 transition), as well as high repeatability of the signal, indicate that this material could be used in temperature sensing applications.

7.
Materials (Basel) ; 16(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36837146

RESUMEN

Modified barium gallo-germanate glass hosts are still worthy of attention in studying structure-property relationships. In this work, two different series of glass systems based on (60-x)GeO2-xTiO2-30BaO-10Ga2O3 and (60-x)GeO2-xB2O3-30BaO-10Ga2O3 (x = 10, 30, 50 mol%) were synthesized, and their properties were studied using spectroscopic techniques. X-ray diffraction (XRD) patterns revealed that all fabricated glasses were fully amorphous material. The absorption edge shifted toward the longer wavelengths with a gradual substitution of GeO2. The spectroscopic assignments of titanium ions were performed with excitation and emission spectra compared to the additional sample containing an extremely low content of TiO2 (0.005 mol%). On the basis of Raman and FT-IR investigations, it was found that increasing the TiO2 content caused a destructive effect on the GeO4 and GeO6 structural units. The Raman spectra of a sample containing a predominantly TiO2 (50 mol%) proved that the band was located near 650 cm-1, which corresponded to the stretching vibration of Ti-O in TiO6 unit. The deconvoluted IR results showed that the germanate glass network consisted of the coexistence of two BO3 and BO4 structural groups. Based on the experimental investigations, we concluded that the developed materials are a promising candidate for use as novel glass host matrices for doping rare-earth and/or transition metal ions.

8.
Materials (Basel) ; 16(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837218

RESUMEN

Nanophosphors are widely used, especially in biological applications in the first and second biological windows. Currently, nanophosphors doped with lanthanide ions (Ln3+) are attracting much attention. However, doping the matrix with lanthanide ions is associated with a narrow luminescence bandwidth. This paper describes the structural and luminescence properties of co-doped LaPO4 nanophosphors, fabricated by the co-precipitation method. X-ray structural analysis, scanning electron microscope measurements with EDS analysis, and luminescence measurements (excitation 395 nm) of LaPO4:Eu3+/Nd3+ and LaPO4:Eu3+/Nd3+/Yb3+ nanophosphors were made and energy transfer between rare-earth ions was investigated. Tests performed confirmed the crystal structure of the produced phosphors and deposition of rare-earth ions in the structure of LaPO4 nanocrystals. In the range of the first biological window (650-950 nm), strong luminescence bands at the wavelengths of 687 nm and 698 nm (5D0 → 7F4:Eu3+) and 867 nm, 873 nm, 889 nm, 896 nm, and 907 nm (4F3/2 → 4I9/2:Nd3+) were observed. At 980 nm, 991 nm, 1033 nm (2F5/2 → 2F7/2:Yb3+) and 1048 nm, 1060 nm, 1073 nm, and 1080 nm (4F3/2 → 4I9/2:Nd3+), strong bands of luminescence were visible in the 950 nm-1100 nm range, demonstrating that energy transfer took place.

9.
Materials (Basel) ; 15(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36556847

RESUMEN

Borogermanate glasses singly doped with Dy3+ ions were synthesized and then studied using the absorption and luminescence spectra. Spectroscopic changes of Dy3+ ions have been examined for compositional-dependent glasses with various molar ratios GeO2:B2O3. In this work, several spectroscopic parameters of Dy3+ ions were obtained experimentally and compared to the calculated values from the Judd-Ofelt theory. Luminescence spectra measured for borogermanate glasses consist of blue, yellow and red bands, which correspond to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 transitions of Dy3+, respectively. Luminescence lifetimes for the 4F9/2 excited state are reduced, whereas the stimulated emission cross-sections for the most intense 4F9/2 → 6H13/2 yellow transition of Dy3+ increase with increasing GeO2 and decreasing B2O3 concentrations in glass-hosts. Quantum efficiency of the 4F9/2 (Dy3+) excited state is nearly independent on molar ratios GeO2:B2O3. Attractive spectroscopic properties related to the 4F9/2 → 6H13/2 transition of Dy3+ ions are found for borogermanate glasses implying their potential utility for yellow laser action and solid-state lighting technology.

10.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558353

RESUMEN

In this work, the series of Dy3+-doped silicate xerogels were synthesized by sol-gel technique and further processed at 350 °C into SiO2-LaF3:Dy3+ nano-glass-ceramic materials. The X-ray diffraction (XRD) measurements, along with the thermal analysis, indicated that heat-treatment triggered the decomposition of La(TFA)3 inside amorphous sol-gel hosts, resulting in the formation of hexagonal LaF3 phase with average crystal size at about ~10 nm. Based on the photoluminescence results, it was proven that the intensities of blue (4F9/2 → 6H15/2), yellow (4F9/2 → 6H13/2), and red (4F9/2 → 6H11/2) emissions, as well as the calculated yellow-to-blue (Y/B) ratios, are dependent on the nature of fabricated materials, and from fixed La3+:Dy3+ molar ratios. For xerogels, the emission was gradually increased, and the τ(4F9/2) lifetimes were elongated to 42.7 ± 0.3 µs (La3+:Dy3+ = 0.82:0.18), however, for the sample with the lowest La3+:Dy3+ molar ratio (0.70:0.30), the concentration quenching was observed. For SiO2-LaF3:Dy3+ nano-glass-ceramics, the concentration quenching effect was more visible than for xerogels and started from the sample with the highest La3+:Dy3+ molar ratio (0.988:0.012), thus the τ(4F9/2) lifetimes became shorter from 1731.5 ± 5.7 up to 119.8 ± 0.4 µs. The optical results suggest, along with an interpretation of XRD data, that Dy3+ ions were partially entered inside LaF3 phase, resulting in the shortening of Dy3+-Dy3+ inter-ionic distances.

11.
Materials (Basel) ; 15(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431585

RESUMEN

Glasses, glass-ceramics and ceramics belong to three important classes of engineering materials, which are useful in numerous multifunctional and industrial applications [...].

12.
Materials (Basel) ; 15(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955165

RESUMEN

The effect of BaF2, MgF2, and AlF3 on the structural and luminescent properties of gallo-germanate glass (BGG) doped with erbium ions was investigated. A detailed analysis of infrared and Raman spectra shows that the local environment of erbium ions in the glass was influenced mainly by [GeO]4 and [GeO]6 units. Moreover, the highest number of non-bridging oxygens was found in the network of the BGG glass modified by MgF2. The 27Al MAS NMR spectrum of BGG glass with AlF3 suggests the presence of aluminum in tetra-, penta-, and octahedral coordination geometry. Therefore, the probability of the 4I13/2→4I15/2 transition of Er3+ ions increases in the BGG + MgF2 glass system. On the other hand, the luminescence spectra showed that the fluoride modifiers lead to an enhancement in the emission of each analyzed transition when different excitation sources are employed (808 nm and 980 nm). The analysis of energy transfer mechanisms shows that the fluoride compounds promote the emission intensity in different channels. These results represent a strong base for designing glasses with unique luminescent properties.

13.
Materials (Basel) ; 15(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955197

RESUMEN

In this work, the synthesis and characterization of Li2MgGeO4:Ho3+ ceramics were reported. The X-ray diffraction measurements revealed that the studied ceramics belong to the monoclinic Li2MgGeO4. Luminescence properties were analyzed in the visible spectral range. Green and red emission bands correspondent to the 5F4,5S2→5I8 and 5F5→5I8 transitions of Ho3+ were observed, and their intensities were significantly dependent on activator concentration. Luminescence spectra were also measured under direct excitation of holmium ions or ceramic matrix. Holmium ions were inserted in crystal lattice Li2MgGeO4, giving broad blue emission and characteristic 4f-4f luminescent transitions of rare earths under the selective excitation of the ceramic matrix. The presence of the energy transfer process between the host lattice and Ho3+ ions was suggested.

14.
Materials (Basel) ; 15(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35683100

RESUMEN

Glass-ceramic is semi-novel material with many applications, but it is still problematic in obtaining fibers. This paper aims to develop a new glass-ceramic material that is a compromise between crystallization, thermal stability, and optical properties required for optical fiber technology. This compromise is made possible by an alternative method with a controlled crystallization process and a suitable choice of the chemical composition of the core material. In this way, the annealing process is eliminated, and the core material adopts a glass-ceramic character with high transparency directly in the drawing process. In the experiment, low phonon antimony-germanate-silicate glass (SGS) doped with Eu3+ ions and different concentrations of P2O5 were fabricated. The glass material crystallized during the cooling process under conditions similar to the drawing processes'. Thermal stability (DSC), X-ray photo analysis (XRD), and spectroscopic were measured. Eu3+ ions were used as spectral probes to determine the effect of P2O5 on the asymmetry ratio for the selected transitions (5D0 → 7F1 and 5D0 → 7F2). From the measurements, it was observed that the material produced exhibited amorphous or glass-ceramic properties, strongly dependent on the nucleator concentration. In addition, the conducted study confirmed that europium ions co-form the EuPO4 structure during the cooling process from 730 °C to room temperature. Moreover, the asymmetry ratio was changed from over 4 to under 1. The result obtained confirms that the developed material has properties typical of transparent glass-ceramic while maintaining high thermal stability, which will enable the fabrication of fibers with the glass-ceramic core.

15.
Materials (Basel) ; 15(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629686

RESUMEN

Inorganic glasses co-doped with rare-earth ions have a key potential application value in the field of optical communications. In this paper, we have fabricated and then characterized multicomponent TiO2-modified germanate glasses co-doped with Yb3+/Ln3+ (Ln = Pr, Er, Tm, Ho) with excellent spectroscopic properties. Glass systems were directly excited at 980 nm (the 2F7/2 → 2F5/2 transition of Yb3+). We demonstrated that the introduction of TiO2 is a promising option to significantly enhance the main near-infrared luminescence bands located at the optical telecommunication window at 1.3 µm (Pr3+: 1G4 → 3H5), 1.5 µm (Er3+: 4I13/2 → 4I15/2), 1.8 µm (Tm3+: 3F4 → 3H6) and 2.0 µm (Ho3+: 5I7 → 7I8). Based on the lifetime values, the energy transfer efficiencies (ηET) were estimated. The values of ηET are changed from 31% for Yb3+/Ho3+ glass to nearly 53% for Yb3+/Pr3+ glass. The investigations show that obtained titanate-germanate glass is an interesting type of special glasses integrating luminescence properties and spectroscopic parameters, which may be a promising candidate for application in laser sources emitting radiation and broadband tunable amplifiers operating in the near-infrared range.

16.
Materials (Basel) ; 15(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35160713

RESUMEN

The results presented in this communication concern visible and near-IR emission of Pr3+ ions in selected inorganic glasses, i.e., borate-based glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate glass modified by BaO/BaF2, and multicomponent fluoride glass based on InF3. Glasses present several emission bands at blue, reddish orange, and near-infrared spectral ranges, which correspond to 4f-4f electronic transitions of Pr3+. The profiles of emission bands and their relative intensity ratios depend strongly on glass-host. Visible emission of Pr3+ ions is tuned from red/orange for borate-based glass to nearly white light for multicomponent fluoride glass based on InF3. The positions and spectral linewidths for near-infrared luminescence bands at the optical telecommunication window corresponding to the 1G4 → 3H5, 1D2 → 1G4, and 3H4 → 3F3,3F4 transitions of Pr3+ are dependent on glass-host matrices and excitation wavelengths. Low-phonon fluoride glasses based on InF3 and gallo-germanate glasses with BaO/BaF2 are excellent candidates for broadband near-infrared optical amplifiers. Spectroscopic properties of Pr3+-doped glasses are compared and discussed in relation to potential optical applications.

17.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055276

RESUMEN

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol-gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol-gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6-3)) and Eu3+ (5D0 → 7FJ (J = 0-4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.

18.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614399

RESUMEN

In this paper, the effect of the GeO2:TiO2 molar ratio in glass composition on the spectroscopic properties of germanate glasses was systematically investigated. The visible luminescence bands associated with characteristic 1D2 → 3H4 (red), 5S2, 5F4 → 5I8 (green), and 1D2 → 3F4 (blue) transitions of Pr3+, Ho3+, and Tm3+ ions in systems modified by TiO2 were well observed, respectively. It was found that the luminescence intensity of glasses containing Pr3+ and Ho3+ ions increases, whereas, for Tm3+-doped systems, luminescence quenching with increasing content of TiO2 was observed. Based on Commission Internationale de I'Eclairage (CIE) chromaticity coordinates (x, y) analysis, it was demonstrated that the value of chromaticity coordinates for all glasses depends on the GeO2:TiO2 molar ratio. The addition of TiO2 to system compositions doped with Tm3+ ions shifts the (x, y) to the center of the CIE diagram. However, chromaticity coordinates evaluated for glasses containing Pr3+ ions move to a purer red color. Our results confirm that the spectroscopic properties of the studied glasses strongly depend on TiO2 content. Moreover, it can be stated that germanate-based glass systems modified by TiO2 can be used for optoelectronics in RGB technology as red (Pr3+), green (Ho3+), and blue (Tm3+) emitters.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120693, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34894565

RESUMEN

Spectral properties of lead-free glasses doped with Dy3+ ions in function of glass formers and glass modifiers were studied. The glass systems in a function of concentration GeO2 and CaO/SrO/BaO which was partially or totally replaced by CaF2/SrF2/BaF2 were synthesized. The visible luminescence spectra for obtained glasses were registered and value of parameters such as ratio of yellow-to-blue luminescence and the Commission Internationale de I'Eclairage (CIE) chromaticity coordinates (x, y) were analyzed in detail. The Y/B increase from 2.97 to 3.8 in systems with increasing of concentration glass former (GeO2), whereas ratio Y/B slightly decreases when the of content fluoride glass modifiers increases. The obtained results confirm that impact on visible luminescence of lead-free borate glasses doped with Dy3+ ions is greater for glass former than glass modifier. Moreover, studied systems can be used for optoelectronic as yellowish emitters.

20.
Materials (Basel) ; 14(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885309

RESUMEN

Glasses containing two different network-forming components and doped with optically active ions exhibit interesting properties. In this work, glass systems based on germanium dioxide and boron trioxide singly doped with lanthanides (Eu3+) and transition metals (Cr3+) ions are research subjects. Optical spectroscopy was the major research tool used to record excitation and emission spectra in a wide spectral range for studied systems. The emitted radiation of glasses doped with Cr3+ ions is dominated by broadband luminescence centered at 770 nm and 1050 nm (4T2 → 4A2). Interestingly, the increase of concentration of one of the oxides contributed to the detectable changes of the R-line (2E → 4A2) of Cr3+ ions. Moreover, EPR spectroscopy confirmed the paramagnetic properties of the obtained glasses. The influence of molar ratio GeO2:B2O3 on spectroscopic properties for Eu3+ ions is discussed. The intensity of luminescence bands due to transitions of trivalent europium ions as well as the ratio R/O decrease with the increase of B2O3. On the other hand, the increase in concentration B2O3 influences the increasing tendency of luminescence lifetimes for the 5D0 state of Eu3+ ions. The results will contribute to a better understanding of the role of the glass host and thus the prospects for new optical materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA