Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Poult Sci ; 103(10): 104049, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39094496

RESUMEN

Gut health of broiler chickens is essential for production performance. The present study aimed to evaluate the impact of dietary supplementation with potassium diformate (KDF) on growth performance and intestinal health in broiler chickens. A total of 180 Arbor Acres (AA) broiler chickens were randomly allocated into 3 treatments, with 6 replicates, containing 10 chicks in each replicate. The treatment groups were: control group (CON) was fed a basal diet; KDF-4 groups fed the basal diet with 4 g/kg KDF; KDF-8 groups fed the basal diet with 8 g/kg KDF. The experiment period lasted for 42 d. During the starter phase, the ADFI and F/G of broilers in KDF groups were lower (P < 0.05) compared to the CON group. Furthermore, the BW and ADG in KDF-4 group was improved (P<0.05). The treatment groups exhibited a significant increase (P < 0.05) in both ADG and ADFI during the grower and overall phase. Moreover, the F/G in KDF-4 group was lower (P < 0.05) compared to the CON and KDF-8 groups. The semi-eviscerated weight rate (SEWR), eviscerated carcass weight rate (ECWR), pectoral muscle rate (PMR), and leg muscle rate (LMR) of broilers were improved (P < 0.05) in KDF groups. The serum levels of glucose (GLU) and UREA (UA) were significantly higher (P < 0.05) in KDF-8 group. Additionally, the nutrient apparent utilization rate of dry matter (DM), energy (EE), and crude protein (CP) were improved (P < 0.05) in KDF-4 group. The villus height (VH) and villus height to crypt depth ratio (V/C) of duodenum, jejunum, and ileum were higher (P < 0.05) in KDF groups compared to the CON group, while crypt depth (CD) was significantly reduced (P < 0.05). The digestive enzyme activities of lipase (LIP), amylase (AMS), or trypsin (TPS) were significantly enhanced (P < 0.05) in the intestinal chyme, while the total bacterial count, Escherichia coli, Lactobacilli, Bifidobacteria, and Bacillus were reduced (P < 0.05) in the ileum. This study demonstrates that the inclusion of KDF in the diet of broilers leads to improvements in growth, slaughter performance, nutrient utilization rate, and maintenance of intestinal health.

2.
Animals (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338019

RESUMEN

A ten-week trial was conducted to evaluate the enhancement of production performance and nutrient utilization of laying hens through augmenting energy, phosphorous, and calcium deficient diets with fungal phytase (Trichoderma reesei) supplementation. 720 Hy-line Brown hens aged 28 weeks were randomly divided into 5 groups; each group had 8 replicates of 18 hens. Five experimental diets were prepared and fed to corresponding groups. A positive control (PC) diet contained 3.50% of calcium (Ca), 0.32% of non-phytate phosphorus (NPP), and apparent metabolic energy (AME) of 11.29MJ/kg, while a negative control (NC) diet contained 3.30% of Ca, 0.12% of NPP, and lower AME of 300 kJ/kg. The other three diets were supplemented with 250 FTU/kg phytase (PHY-250), 1000 FTU/kg phytase (PHY-1000), and 2000 FTU/kg phytase (PHY-2000) in addition to a regular NC diet. Results indicated that the positive control (PC) diet group had higher body weight gain, egg weight, and average daily feed intake. However, laying rate, egg mass, and FCR were most improved in the PHY-2000 group, followed by the PHY-1000 and PHY-250 groups (p < 0.05). Improved yolk color was most notable in laying hens fed the diet with PHY-1000 as opposed to the PC and NC groups (p < 0.05), but no overall difference was found among all of the phytase treated groups. The apparent availability of dry matter, energy, phosphorus, and phytate P was significantly higher in the PHY-2000 group than in the PC and NC groups (p < 0.05). Compared to the PC group, nitrogen retention was significantly higher in the PHY-1000 group, while calcium availability was higher in the PHY-250 group. The results suggested that the addition of phytase to diets with low P, Ca, and AME improved laying performance and apparent availability of dietary nutrients. Thus, it was concluded that the laying hen diet could be supplemented with 1000-2000 FTU/kg phytase for improving laying production and nutrient availability and mitigating the negative impact of reduced nutrient density in laying hen diets.

3.
Animals (Basel) ; 13(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36830524

RESUMEN

This study aimed to investigate the effect of dietary lysolecithin (LYSO) and lipase supplementation on productive performance, nutrient retention, and meat quality of broiler chicken fed a low energy diet. For this purpose, a total of 360 chicks were randomly alienated into six treatments, having six replicates (no = 10) birds each replicate. The dietary treatments were followed as control (CON fed as normal energy diet), LE (CON-100 kcal/kg from BD. basal diet), LIP 0.04 (LE + 0.04% lipase), LYSO 0.04 (LE + 0.04% lysolecithin), LIP + LYSO 0.04 (LE + 0.04% lipase and lysolecithin), and LIP + LYSO 0.08 (LE. + 0.08% lipase and lysolecithin). The birds fed with LIP + LYSO 0.04 exhibited higher weight gain than LYSO 0.08 and CON (p < 0.05), and higher feed intake (F.I.) was also observed in LIP + LYSO 0.04 than CON. However, lipase and emulsifier dietary effects were non-significant on FCR. (p > 0.05). Effects of experimental diets on dry matter (DM), crude protein (CP), and fat digestibility were also non-significant (p > 0.05). Similarly, the blood biochemical profile (total cholesterol, triglycerides, LDL, HDL) of the broiler showed no significant difference (p > 0.05) by dietary treatments. Similarly, liver enzymes, AST and A.L.T., were also not statistically significant (p > 0.05) among all dietary treatments. Similarly, supplementation of LIP and LYSO had a non-significant (p > 0.05) effect on breast meat fatty acids composition. Conclusively, adding LIP + LYSO 0.08 to a low energy diet could demonstrate better growth performance and reduce the negative impact of a low-energy diet.

4.
Anim Biotechnol ; 33(7): 1539-1544, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33938381

RESUMEN

This study was examined to investigate the effect of Azomite (AZO) on the growth performance, immune function, and bone mineralization of broiler chickens. A total of 240-d old male chicks were randomly assigned into four treatments with six replicates (n = 10), which included control (basal diet), basal diet +0.25% AZO, basal diet + 0.50% AZO and basal diet + kitasamycin as antibiotic growth promoter (AGP). The results indicate that live body weight (LBW), average daily gain (ADG) and feed conversion ratio (FCR) were significantly (p < .05) improved in AZO 0.25% and 0.50% than the control. The weight of bursa of Fabricus was significantly (p < .05) higher in AZO-0.25% and AZO-0.50% than control. Total protein (TP), globulin, IgA and IgG levels were significantly (p < .05) increased with AZO supplemented treatments. Tibia diameter tibia breaking strength was significantly (p < .05) increased in AZO- 0.25% and AZO-0.50% treatment. In conclusion, the results indicated that addition of AZO at the doses of 0.25% and 0.50% in the diet had beneficial effects on growth performance, immune functions and tibia breaking strength.


Asunto(s)
Pollos , Tibia , Animales , Masculino , Fenómenos Fisiológicos Nutricionales de los Animales , Suplementos Dietéticos , Dieta/veterinaria , Inmunidad , Alimentación Animal/análisis
5.
J Anim Sci Biotechnol ; 12(1): 90, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34253261

RESUMEN

BACKGROUND: Immunological stress decreases feed intake, suppresses growth and induces economic losses. However, the underlying molecular mechanism remains unclear. Label-free liquid chromatography and mass spectrometry (LC-MS) proteomics techniques were employed to investigate effects of immune stress on the hepatic proteome changes of Arbor Acres broilers (Gallus Gallus domesticus) challenged with Escherichia coli lipopolysaccharide (LPS). RESULTS: Proteomic analysis indicated that 111 proteins were differentially expressed in the liver of broiler chickens from the immune stress group. Of these, 28 proteins were down-regulated, and 83 proteins were up-regulated in the immune stress group. Enrichment analysis showed that immune stress upregulated the expression of hepatic proteins involved in defense function, amino acid catabolism, ion transport, wound healing, and hormone secretion. Furthermore, immune stress increased valine, leucine and isoleucine degradation pathways. CONCLUSION: The data suggests that growth depression of broiler chickens induced by immune stress is triggered by hepatic proteome alterations, and provides a new insight into the mechanism by which immune challenge impairs poultry production.

6.
Animals (Basel) ; 10(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019513

RESUMEN

Rapeseed meal (RSM) is a common protein ingredient in animal diets, while the proportion of RSM in diets is limited because of its anti-nutritional factors. Fermentation based on mixed microbial strains appears to be a suitable approach to improve the nutritive value of rapeseed meal in animal feed. In this study, we evaluated the effects of fermentation on the apparent metabolizable energy (AME) values and standardized ileal digestibility (SID) of amino acids in RSM fed broilers. The AME and nitrogen-corrected apparent metabolizable energy (AMEn) values of RSM and fermented rapeseed meal (FRSM) were determined by the substitution method, with RSM and FRSM proportionally replacing the energy-yielding components of the basal diet by 30%. Results show that fermentation improved AME and AMEn of RSM from 7.44 to 8.51 MJ/kg and from 7.17 to 8.26 MJ/kg, respectively. In the second experiment, two experimental diets were formulated, with RSM and FRSM being the sole sources of amino acids. A nitrogen-free diet (NFD) was also formulated to determine endogenous amino acids losses (EAAL). Feeding on FRSM resulted in higher (p < 0.05) apparent ileal digestibility (AID) and SID of alanine, valine, isoleucine, leucine, tyrosine, lysine, arginine, and phenylalanine. No significant differences between RSM and FRSM were found for AID and SID of asparagine, histidine, threonine, serine, glutamine, praline, glycine, methionine, and cystine. FRSM had greater AMEn values and SID of amino acids compared to RSM, therefore, FRSM was nutritionally superior to RSM in broiler diets.

7.
Animals (Basel) ; 10(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824750

RESUMEN

Many factors contribute to the stress of transporting broilers from the farm to the processing plant. Using a motion simulation machine, a total of 144 male broilers were employed to determine the effect of motion, vibration, and feed withdrawal during transportation on serum biochemical parameters, postmortem muscle metabolism, and meat quality of broilers. The results indicated that transportation did not affect the activity of lactate dehydrogenase, γ-glutamyl transferase, aspartate aminotransferase, creatine kinase, and glucose in the serum, glutathione peroxidase in the breast and thigh muscle, nitric oxide synthase (NOS) in the breast, and heat stress protein 70 mRNA expression level in the liver (p > 0.05). Serum triiodothyronine, thyroxine, and insulin concentration declined with 2 h transportation (p < 0.05) and recovered with 4 h transportation (p < 0.05). NOS concentration in the thigh increased with 2 h transportation (p < 0.05) and recovered with 4 h transportation (p < 0.05). Two-hour and 4 h transportation increased the activity of superoxide dismutase in both muscles. Malondialdehyde, lactic acid, and drip loss24 h in both thigh and breast muscles increased, and glycogen in both muscles decreased with increasing transportation times (p < 0.05). Two-hour transportation did not influence pH45 min and pH24 h in the breast and thigh muscle, but these indexes decreased with 4 h transportation. This experiment supports and extends previous work that identified transportation as a major risk in relation to bird welfare and meat quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA