RESUMEN
PROBLEM: Omega-3 and omega-6 fatty acids can be endogenously converted into mediators with pro-inflammatory (eg, leukotriene B4/LTB4) or anti-inflammatory/pro-resolving activities (eg, resolvin D1/RvD1 and maresin 1/MaR1). Recent data indicate an imbalance of LTB4 and MaR1 levels in pre-eclampsia (PE), but the relative production of these mediators, including RvD1, and the role of these mediators in the disease pathogenesis remain unclear. Therefore, this study aimed to investigate the plasma levels of LTB4, RvD1, and MaR1 in pregnant women with or without PE and non-pregnant controls and their association with clinical/laboratory parameters of PE women. METHOD OF STUDY: LTB4, RvD1, and MaR1 plasma levels were measured by competitive enzyme immunoassay in 19 non-pregnant, 20 normotensive pregnant, and 21 PE women. RESULTS: Plasma concentrations of LTB4 were higher and RvD1 were lower in PE women than in normotensive pregnant women, who presented higher levels of LTB4 and similar levels of RvD1 to non-pregnant women. MaR1 levels did not differ among the groups. Pre-eclampsia women had decreased RvD1/LTB4 and MaR1/LTB4 ratios. Considering only the PE group, positive correlations were observed among all the mediators tested, between LTB4 and white blood cell count and between RvD1 and creatinine levels. However, all lipid mediators correlated negatively with body mass index before pregnancy. LTB4 also correlated negatively with maternal age. CONCLUSION: Our findings suggest that the PE state results in systemic overproduction of LTB4 in relation to RvD1 and MaR1, and that these lipid mediators may be involved with the disease pathogenesis.
Asunto(s)
Ácidos Docosahexaenoicos/sangre , Mediadores de Inflamación/sangre , Leucotrieno B4/sangre , Preeclampsia/sangre , Adulto , Índice de Masa Corporal , Ácidos Grasos Omega-3/farmacocinética , Ácidos Grasos Omega-6/farmacocinética , Femenino , Humanos , Inflamación/sangre , Embarazo , Adulto JovenRESUMEN
Inflammation is a reaction of the host to infectious or sterile stimuli and has the physiological purpose of restoring tissue homeostasis. However, uncontrolled or unresolved inflammation can lead to tissue damage, giving rise to a plethora of chronic inflammatory diseases, including metabolic syndrome and autoimmunity pathologies with eventual loss of organ function. Beta-nitrostyrene and its derivatives are known to have several biological activities, including anti-edema, vasorelaxant, antiplatelet, anti-inflammatory, and anticancer. However, few studies have been carried out regarding the anti-inflammatory effects of this class of compounds. Thereby, the aim of this study was to evaluate the anti-inflammatory activity of 1-nitro-2-phenylethene (NPe) using in vitro and in vivo assays. Firstly, the potential anti-inflammatory activity of NPe was evaluated by measuring TNF-α produced by human macrophages stimulated with lipopolysaccharide (LPS). NPe at non-toxic doses opposed the inflammatory effects induced by LPS stimulation, namely production of the inflammatory cytokine TNF-α and activation of NF-κB and ERK pathways (evaluated by phosphorylation of inhibitor of kappa B-alpha [IκB-α] and extracellular signal-regulated kinase 1/2 [ERK1/2], respectively). In a well-established model of acute pleurisy, pretreatment of LPS-challenged mice with NPe reduced neutrophil accumulation in the pleural cavity. This anti-inflammatory effect was associated with reduced activation of NF-κB and ERK1/2 pathways in NPe treated mice as compared to untreated animals. Notably, NPe was as effective as dexamethasone in both, reducing neutrophil accumulation and inhibiting ERK1/2 and IκB-α phosphorylation. Taken together, the results suggest a potential anti-inflammatory activity for NPe via inhibition of ERK1/2 and NF-κB pathways on leukocytes.