Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gene Ther ; 23(5): 469-78, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26926804

RESUMEN

Adeno-associated virus (AAV) has been used to direct gene transfer to a variety of tissues, including heart, liver, skeletal muscle, brain, kidney and lung, but it has not previously been shown to effectively target fibroblasts in vivo, including cardiac fibroblasts. We constructed expression cassettes using a modified periostin promoter to drive gene expression in a cardiac myofibroblast-like lineage, with only occasional spillover into cardiomyocyte-like cells. We compared AAV serotypes 6 and 9 and found robust gene expression when the vectors were delivered by systemic injection after myocardial infarction (MI), with little expression in healthy, non-infarcted mice. AAV9 provided expression in a greater number of cells than AAV6, with reporter gene expression visible in the cardiac infarct and border zones from 5 to 62 days post MI, as assessed by luciferase and Cre-activated green fluorescent protein expression. Although common myofibroblast markers were expressed in low abundance, most of the targeted cells expressed myosin IIb, an embryonic form of smooth muscle myosin heavy chain that has previously been associated with myofibroblasts after reperfused MI. This study is the first to demonstrate AAV-mediated expression in a potentially novel myofibroblast-like lineage in mouse hearts post MI and may open new avenues of gene therapy to treat patients surviving MI.


Asunto(s)
Moléculas de Adhesión Celular/genética , Dependovirus/genética , Terapia Genética , Infarto del Miocardio/terapia , Animales , Moléculas de Adhesión Celular/uso terapéutico , Linaje de la Célula/genética , Regulación de la Expresión Génica , Corazón/fisiopatología , Humanos , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miofibroblastos/patología , Regiones Promotoras Genéticas
2.
Gene Ther ; 20(9): 930-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23535898

RESUMEN

Targeting therapeutic gene expression to the skeletal muscle following intravenous (IV) administration is an attractive strategy for treating peripheral arterial disease (PAD), except that vector access to the ischemic limb could be a limiting factor. As adeno-associated virus serotype 9 (AAV-9) transduces skeletal muscle at high efficiency following systemic delivery, we employed AAV-9 vectors bearing luciferase or enhanced green fluorescent protein (eGFP) reporter genes to test the hypothesis that increased desialylation of cell-surface glycans secondary to hindlimb ischemia (HLI) might help offset the reduction in tissue perfusion that occurs in mouse models of PAD. The utility of the creatine kinase-based (CK6) promoter for restricting gene expression to the skeletal muscle was also examined by comparing it with the cytomegalovirus (CMV) promoter after systemic administration following surgically induced HLI. Despite reduced blood flow to the ischemic limbs, CK6 promoter-driven luciferase activities in the ischemic gastrocnemius (GA) muscles were ∼34-, ∼28- and ∼150-fold higher than in the fully perfused contralateral GA, heart and liver, respectively, 10 days after IV administration. Furthermore, luciferase activity from the CK6 promoter in the ischemic GA muscles was ∼twofold higher than with CMV, while in the liver CK6-driven activity was ∼42-fold lower than with CMV, demonstrating that the specificity of ischemic skeletal muscle transduction can be further improved with the muscle-specific promoters. Studies with Evans blue dye and fluorescently labeled lectins revealed that vascular permeability and desialylation of the cell-surface glycans were increased in the ischemic hindlimbs. Furthermore, AAV9/CK6/Luc vector genome copy numbers were ∼sixfold higher in the ischemic muscle compared with the non-ischemic muscle in the HLI model, whereas this trend was reversed when the same genome was packaged in the AAV-1 capsid (which binds sialylated, as opposed to desialylated glycans), further underscoring the importance of desialylation in the ischemic enhancement of transduction displayed by AAV-9. Taken together, these findings suggest two complementary mechanisms contributing to the preferential transduction of ischemic muscle by AAV-9: increased vascular permeability and desialylation. In conclusion, ischemic muscle is preferentially targeted following systemic administration of AAV-9 in a mouse model of HLI. Unmasking of the primary AAV-9 receptor as a result of ischemia may contribute importantly to this effect.


Asunto(s)
Dependovirus/fisiología , Terapia Genética , Isquemia/terapia , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/terapia , Animales , Dependovirus/genética , Dependovirus/metabolismo , Genes Reporteros , Vectores Genéticos , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/genética , Isquemia/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedad Arterial Periférica/metabolismo , Polisacáridos/metabolismo , Regiones Promotoras Genéticas , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA