Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37763554

RESUMEN

In subtractive manufacturing processes, swarf, burrs or other residues are produced, which can impair the function of a tribological system (e.g., journal bearings). To prevent premature engine damage, cleanliness requirements are defined for production processes. Damaging particle tests are an experimental approach for validating these defined cleanliness requirements. This methodical approach is not yet widely used. For one, the test setup must be developed and proven for the respective application. For another, in order to carry out the tests in a systematic manner, defined test particles with properties similar to those of the contaminants encountered in reality are required. In the second part of the paper, the process chain for manufacturing artificial test swarf by micro powder injection molding (MicroPIM) is described. The size and shape of the swarf were derived from real swarf via several abstraction processes. Although certain design guidelines for MicroPIM parts could not be taken into account, the targeted manufacturing tolerances were achieved in most cases. During demolding, it became apparent that the higher ejection forces of the free-formed geometries must be taken more into account in the design of the mold. The experiments on the test setup also revealed that the artificial test swarf was unexpectedly brittle and was therefore ground up in the bearing gap without causing any substantial damage to the bearing. Thus, the artificial test swarf in its current sintered state is not a suitable substitute for micromilled swarf. However, MicroPIM could still be used to manufacture test particles in applications involving lower mechanical forces.

2.
Polymers (Basel) ; 10(11)2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30961163

RESUMEN

The success of labs- and organs-on-chips as transformative technologies in the biomedical arena relies on our capacity of solving some current challenges related to their design, modeling, manufacturability, and usability. Among present needs for the industrial scalability and impact promotion of these bio-devices, their sustainable mass production constitutes a breakthrough for reaching the desired level of repeatability in systematic testing procedures based on labs- and organs-on-chips. The use of adequate biomaterials for cell-culture processes and the achievement of the multi-scale features required, for in vitro modeling the physiological interactions among cells, tissues, and organoids, which prove to be demanding requirements in terms of production. This study presents an innovative synergistic combination of technologies, including: laser stereolithography, laser material processing on micro-scale, electroforming, and micro-injection molding, which enables the rapid creation of multi-scale mold cavities for the industrial production of labs- and organs-on-chips using thermoplastics apt for in vitro testing. The procedure is validated by the design, rapid prototyping, mass production, and preliminary testing with human mesenchymal stem cells of a conceptual multi-organ-on-chip platform, which is conceived for future studies linked to modeling cell-to-cell communication, understanding cell-material interactions, and studying metastatic processes.

3.
Biomed Microdevices ; 13(5): 909-22, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21698382

RESUMEN

We describe an integration strategy for arbitrary sensors intended to be used as biosensors in biomedical or bioanalytical applications. For such devices ease of handling (by a potential end user) as well as strict disposable usage are of importance. Firstly we describe a generic array compatible polymer sensor housing with an effective sample volume of 1.55 µl. This housing leaves the sensitive surface of the sensor accessible for the application of biosensing layers even after the embedding. In a second step we show how this sensor housing can be used in combination with a passive disposable microfluidic chip to set up arbitrary 8-fold sensor arrays and how such a system can be complemented with an indirect microfluidic flow injection analysis (FIA) system. This system is designed in a way that it strictly separates between disposable and reusable components- by introducing tetradecane as an intermediate liquid. This results in a sensor system compatible with the demands of most biomedical applications. Comparative measurements between a classical macroscopic FIA system and this integrated indirect microfluidic system are presented. We use a surface acoustic wave (SAW) sensor as an exemplary detector in this work.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Absorción , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Análisis de Inyección de Flujo/instrumentación , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Proteínas/análisis , Proteínas/química
4.
Philos Trans A Math Phys Eng Sci ; 369(1944): 2320-8, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21536579

RESUMEN

We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two- and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D(c)/D(η)=0.1 of the two model parameters.

5.
Lab Chip ; 7(6): 777-85, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17538721

RESUMEN

We describe a multi-purpose platform for the three-dimensional cultivation of tissues. The device is composed of polymer chips featuring a microstructured area of 1-2 cm(2). The chip is constructed either as a grid of micro-containers measuring 120-300 x 300 x 300 microm (h x l x w), or as an array of round recesses (300 microm diameter, 300 microm deep). The micro-containers may be separately equipped with addressable 3D-micro-electrodes, which allow for electrical stimulation of excitable cells and on-site measurements of electrochemically accessible parameters. The system is applicable for the cultivation of high cell densities of up to 8 x 10(6) cells and, because of the rectangular grid layout, allows the automated microscopical analysis of cultivated cells. More than 1000 micro-containers enable the parallel analysis of different parameters under superfusion/perfusion conditions. Using different polymer chips in combination with various types of bioreactors we demonstrated the principal suitability of the chip-based bioreactor for tissue culture applications. Primary and established cell lines have been successfully cultivated and analysed for functional properties. When cells were cultured in non-perfused chips, over time a considerable degree of apoptosis could be observed indicating the need for an active perfusion. The system presented here has also been applied for the differentiation analysis of pluripotent embryonic stem cells and may be suitable for the analysis of the stem cell niche.


Asunto(s)
Reactores Biológicos , Células Madre Embrionarias/citología , Microfluídica/métodos , Células Madre Pluripotentes/citología , Polímeros/química , Ingeniería de Tejidos , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Electroquímica , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/ultraestructura , Diseño de Equipo , Microfluídica/instrumentación , Microscopía Electrónica de Rastreo , Células Madre Pluripotentes/fisiología , Células Madre Pluripotentes/ultraestructura , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA