RESUMEN
OBJECTIVE: To establish the accuracy of frozen section examination in identifying tumor spread through air spaces (STAS), as well as to propose a reproducible technical methodology for frozen section analysis. We also aim to propose a method to be incorporated into the decision making about the need for conversion to lobectomy during sublobar resection. METHODS: This was a nonrandomized prospective study of 38 patients with lung cancer who underwent surgical resection. The findings regarding STAS in the frozen section were compared with the definitive histopathological study of paraffin-embedded sections. We calculated a confusion matrix to obtain the positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity and accuracy. RESULTS: The intraoperative frozen section analysis identified 7 STAS-positive cases that were also positive in the histopathological examination, as well as 3 STAS-negative cases that were positive in the in the histopathological examination. Therefore, frozen section analysis was determined to have a sensitivity of 70%, specificity of 100%, PPV of 100%, NPV of 90.3%, and accuracy of 92% for identifying STAS. CONCLUSIONS: Frozen section analysis is capable of identifying STAS during resection in patients with lung cancer. The PPV, NPV, sensitivity, and specificity showed that the technique proposed could be incorporated at other centers and would allow advances directly linked to prognosis. In addition, given the high accuracy of the technique, it could inform intraoperative decisions regarding sublobar versus lobar resection.
Asunto(s)
Secciones por Congelación , Neoplasias Pulmonares , Sensibilidad y Especificidad , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Estudios Prospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Reproducibilidad de los Resultados , Periodo Intraoperatorio , Valor Predictivo de las Pruebas , Anciano de 80 o más Años , Invasividad Neoplásica , Adulto , Cuidados Intraoperatorios/métodos , Neumonectomía/métodosRESUMEN
In vivo, the temperature inside preovulatory follicles of cows is approximately 1 °C lower than rectal temperature. However, standard bovine oocyte in vitro maturation (IVM) protocols use 38.5 °C based on rectal temperature. This study evaluated the effect of reducing IVM temperature to 37.5 °C on the proteomic profile of oocytes compared to the routine 38.5 °C. Nuclear maturation rate and cumulus cell (CC) expansion (30 COCs per group, 21 replicates) were assessed by observing the first polar body and using a subjective scoring method (0-4). Total nitrite concentrations in the culture medium were measured using the Griess method. Differential proteomics was performed using LC-MS/MS on pooled oocyte samples (500 matured oocytes per group, three replicates), followed by gene ontology enrichment, protein-protein interaction, and putative miRNA target analyses. No significant differences were observed between the groups in nuclear maturation, CC expansion, or nitrite concentration (P > 0.05). A total of 806 proteins were identified, with 7 up-regulated and 12 down-regulated in the treatment group compared to the control. Additionally, 12 proteins were unique to the control group, and 8 were unique to the treatment group. IVM at 37.5 °C resulted in the upregulation of proteins involved in protein folding and GTP binding, and the downregulation of enzymes with oxidoreductase activity and proteins involved in cytoskeletal fiber formation. Furthermore, 43 bovine miRNAs potentially regulating these genes (DES, HMOX2, KRT75, FARSA, IDH2, CARHSP1) were identified. We conclude that IVM of bovine oocytes at 37.5 °C induces significant proteomic changes without impacting nuclear maturation, cumulus cell expansion, or nitrite concentration in the IVM medium.
Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Proteómica , Animales , Bovinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , Femenino , Temperatura , ProteomaRESUMEN
Gluconacetobacter diazotrophicus is a diazotrophic endophytic bacterium that promotes the growth and development of several plant species. However, the molecular mechanisms activated during plant response to this bacterium remain unclear. Here, we used the RNA-seq approach to understand better the effect of G. diazotrophicus PAL5 on the transcriptome of shoot and root tissues of Arabidopsis thaliana. G. diazotrophicus colonized A. thaliana roots and promoted growth, increasing leaf area and biomass. The transcriptomic analysis revealed several differentially expressed genes (DEGs) between inoculated and non-inoculated plants in the shoot and root tissues. A higher number of DEGs were up-regulated in roots compared to shoots. Genes up-regulated in both shoot and root tissues were associated with nitrogen metabolism, production of glucosinolates and flavonoids, receptor kinases, and transcription factors. In contrast, the main groups of down-regulated genes were associated with pathogenesis-related proteins and heat-shock proteins in both shoot and root tissues. Genes encoding enzymes involved in cell wall biogenesis and modification were down-regulated in shoots and up-regulated in roots. In contrast, genes associated with ROS detoxification were up-regulated in shoots and down-regulated in roots. These results highlight the fine-tuning of the transcriptional regulation of A. thaliana in response to colonization by G. diazotrophicus PAL5.
RESUMEN
The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.
Asunto(s)
Fósforo , Fotosíntesis , Proteínas de Plantas , Proteómica , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo , Proteómica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Flavonoides/metabolismo , Proteoma/metabolismoRESUMEN
Plants exhibit phenotypic plasticity in response to environmental variations, which can lead to stable genetic and physiological adaptations if exposure to specific conditions is prolonged. Myrsine coriacea demonstrates this through its ability to thrive in diverse environments. The objective of the article is to investigate potential differences in protein accumulation and physiological responses of M. coriacea by cultivating plants from seeds collected from four populations at different altitudes in a common garden experiment. Additionally, we aim to evaluate whether these differences exhibit genetic fixation. Through integrated physiological and proteomic analyses, we identified 170 differentially accumulated proteins and observed significant physiological differences among the populations. The high-altitude population (POP1) exhibited a unique proteomic profile with significant down-regulation of proteins involved in carbon fixation and energy metabolism, suggesting a potential reduction in photosynthetic efficiency. Physiological analyses showed lower leaf nitrogen content, net CO2 assimilation rate, specific leaf area, and relative growth rate in stem height for POP1, alongside higher leaf carbon isotopic composition (δ13C) and leaf carbon (C) content. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations. SIGNIFICANCE: We investigate the adaptive responses of M. coriacea, a shrub with a broad phenotypic range, by cultivating plants from seeds collected at four different altitudes in a common garden experiment. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations in the face of climate change. This study contributes to advancing our understanding of the influence of altitude-specific selection pressures on the molecular biology and physiology of plants in natural populations. Our findings provide valuable insights that enhance our ability to predict and comprehend how plants respond to climate change.
Asunto(s)
Altitud , Myrsine , Proteómica , Adaptación Fisiológica , Plantas , CarbonoRESUMEN
ABSTRACT Objective: To establish the accuracy of frozen section examination in identifying tumor spread through air spaces (STAS), as well as to propose a reproducible technical methodology for frozen section analysis. We also aim to propose a method to be incorporated into the decision making about the need for conversion to lobectomy during sublobar resection. Methods: This was a nonrandomized prospective study of 38 patients with lung cancer who underwent surgical resection. The findings regarding STAS in the frozen section were compared with the definitive histopathological study of paraffin-embedded sections. We calculated a confusion matrix to obtain the positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity and accuracy. Results: The intraoperative frozen section analysis identified 7 STAS-positive cases that were also positive in the histopathological examination, as well as 3 STAS-negative cases that were positive in the in the histopathological examination. Therefore, frozen section analysis was determined to have a sensitivity of 70%, specificity of 100%, PPV of 100%, NPV of 90.3%, and accuracy of 92% for identifying STAS. Conclusions: Frozen section analysis is capable of identifying STAS during resection in patients with lung cancer. The PPV, NPV, sensitivity, and specificity showed that the technique proposed could be incorporated at other centers and would allow advances directly linked to prognosis. In addition, given the high accuracy of the technique, it could inform intraoperative decisions regarding sublobar versus lobar resection.
RESUMEN
Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 µM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.
RESUMEN
Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.
Asunto(s)
Aluminio , Transcriptoma , Aluminio/toxicidad , Zea mays/genética , Productos Agrícolas , Empalme AlternativoRESUMEN
Localization is a crucial skill in mobile robotics because the robot needs to make reasonable navigation decisions to complete its mission. Many approaches exist to implement localization, but artificial intelligence can be an interesting alternative to traditional localization techniques based on model calculations. This work proposes a machine learning approach to solve the localization problem in the RobotAtFactory 4.0 competition. The idea is to obtain the relative pose of an onboard camera with respect to fiducial markers (ArUcos) and then estimate the robot pose with machine learning. The approaches were validated in a simulation. Several algorithms were tested, and the best results were obtained by using Random Forest Regressor, with an error on the millimeter scale. The proposed solution presents results as high as the analytical approach for solving the localization problem in the RobotAtFactory 4.0 scenario, with the advantage of not requiring explicit knowledge of the exact positions of the fiducial markers, as in the analytical approach.
RESUMEN
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
RESUMEN
Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 µM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.
Asunto(s)
Amaranthaceae , Proteómica , Azacitidina/farmacología , Cloruro de Sodio/farmacología , Tolerancia a la Sal/genética , Epigénesis Genética , Proteínas de Plantas/metabolismo , Estrés FisiológicoRESUMEN
Sleep medicine classes and teachings are usually deficient and insufficient during undergraduate medical education. In order to circumvent the educational deficits in sleep medicine, students at a Brazilian Medical School created a sleep medicine interest group-an academic organization for teaching purposes whose administration is carried out by the undergraduate students themselves. This study aims to describe the establishment of a sleep medicine interest group, as well as to evaluate the results of its first edition on the knowledge about sleep medicine among undergraduate medical students. Classes were taken biweekly and consisted of lectures by invited professors, presentation of clinical cases, and discussion with the students. By the end of the course, both attendees and non-attendees were invited to fill out a questionnaire including an objective assessment of knowledge (15 multiple choice questions). The questionnaire was filled out by 32 participants, of which 18 were attendees and 14 were non-attendees. The average result on the final exam was significantly higher among the attendees (6.1 ± 1.2) in comparison with non-attendees (4.9 ± 1.3-p = 0.015). The results demonstrate that an interest group proved to be feasible as a source of complementary information to undergraduate medical students and a valid alternative to circumvent the educational deficits.
RESUMEN
Cryptococcus spp. are human pathogens that cause 181,000 deaths per year. In this work, we systematically investigated the virulence attributes of Cryptococcus spp. clinical isolates and correlated them with patient data to better understand cryptococcosis. We collected 66 C. neoformans and 19 C. gattii clinical isolates and analyzed multiple virulence phenotypes and host-pathogen interaction outcomes. C. neoformans isolates tended to melanize faster and more intensely and produce thinner capsules in comparison with C. gattii. We also observed correlations that match previous studies, such as that between secreted laccase and disease outcome in patients. We measured Cryptococcus colony melanization kinetics, which followed a sigmoidal curve for most isolates, and showed that faster melanization correlated positively with LC3-associated phagocytosis evasion, virulence in Galleria mellonella and worse prognosis in humans. These results suggest that the speed of melanization, more than the total amount of melanin Cryptococcus spp. produces, is crucial for virulence.
RESUMEN
We investigated the proteomic profiles of two popcorn inbred lines, P2 (N-efficient and N-responsive) and L80 (N-inefficient and nonresponsive to N), under low (10% of N supply) and high (100% of N supply) nitrogen environments, associated with agronomic- and physiological-related traits to NUE. The comparative proteomic analysis allowed the identification of 79 differentially accumulated proteins (DAPs) in the comparison of high/low N for P2 and 96 DAPs in the comparison of high/low N for L80. The NUE and N uptake efficiency (NUpE) presented high means in P2 in comparison to L80 at both N levels, but the NUE, NUpE, and N utilization efficiency (NUtE) rates decreased in P2 under a high N supply. DAPs involved in energy and carbohydrate metabolism suggested that N regulates enzymes of alternative pathways to adapt to energy shortages and that fructose-bisphosphate aldolase may act as one of the key primary nitrate responsive proteins in P2. Proteins related to ascorbate biosynthesis and nitrogen metabolism increased their regulation in P2, and the interaction of L-ascorbate peroxidase and Fd-NiR may play an important role in the NUE trait. Taken together, our results provide new insights into the proteomic changes taking place in contrasting inbred lines, providing useful information on the genetic improvement of NUE in popcorn.
Asunto(s)
ProteómicaRESUMEN
MAIN CONCLUSION: Al responsive proteins are associated with starch, sucrose, and other carbohydrate metabolic pathways. Sucrose synthase is a candidate to Al tolerance. Al responses are regulated at transcriptional and post-transcriptional levels. Aluminum toxicity is one of the important abiotic stresses that affects worldwide crop production. The soluble form of aluminum (Al3+) inhibits root growth by altering water and nutrient uptake, a process that also reduces plant growth and development. Under long-term Al3+ exposure, plants can activate several tolerance mechanisms. To date, no reports of large-scale proteomic data concerning maize responses to this ion have been published. To investigate the post-transcriptional regulation in response to Al toxicity, we performed label-free quantitative proteomics for comparative analysis of two Al-contrasting popcorn inbred lines and an Al-tolerant commercial hybrid during 72 h under Al-stress conditions. A total of 489 differentially accumulated proteins (DAPs) were identified in the Al-sensitive inbred line, 491 in the Al-tolerant inbred line, and 277 in the commercial hybrid. Among them, 120 DAPs were co-expressed in both Al tolerant genotypes. Bioinformatics analysis indicated that starch, sucrose, and other components of carbohydrate metabolism and glycolysis/gluconeogenesis are the biochemical processes regulated in response to Al toxicity. Sucrose synthase accumulation and an increase in sucrose content and starch degradation suggest that these components may enhance popcorn tolerance to Al stress. The accumulation of citrate synthase suggests a key role for this enzyme in the detoxification process in the Al-tolerant inbred line. The integration of transcriptomic and proteomic data indicates that the Al tolerance response presents a complex regulatory network into the transcription and translation dynamics of popcorn root development.
Asunto(s)
Aluminio , Proteómica , Aluminio/toxicidad , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico , Zea mays/genética , Zea mays/metabolismoRESUMEN
To date, the investigation of genes involved in Al resistance has focused mainly on microarrays and short periods of Al exposure. We investigated genes involved in the global response under Al stress by tracking the expression profile of two inbred popcorn lines with different Al sensitivity during 72 h of Al stress. A total of 1003 differentially expressed genes were identified in the Al-sensitive line, and 1751 were identified in the Al-resistant line, of which 273 were shared in both lines. Genes in the category of "response to abiotic stress" were present in both lines, but there was a higher number in the Al-resistant line. Transcription factors, genes involved in fatty acid biosynthesis, and genes involved in cell wall modifications were also detected. In the Al-resistant line, GST6 was identified as one of the key hub genes by co-expression network analysis, and ABC6 may play a role in the downstream regulation of CASP-like 5. In addition, we suggest a class of SWEET transporters that might be involved in the regulation of vacuolar sugar storage and may serve as mechanisms for Al resistance. The results and conclusions expand our understanding of the complex mechanisms involved in Al toxicity and provide a platform for future functional analyses and genomic studies of Al stress in popcorn.
Asunto(s)
Aluminio/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Zea mays/genética , Zea mays/metabolismo , Aluminio/toxicidad , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Anotación de Secuencia Molecular , FitomejoramientoRESUMEN
The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
RESUMEN
OBJECTIVE: To double the percentage of time within the 100 - 180mg/dL blood glucose range in the first three months following a phased implementation of a formal education program, and then, of an insulin therapy protocol, without entailing an increased incidence of hypoglycemia. METHODS: The pre-intervention glycemic control was assessed retrospectively. Next, were carried out the implementation of a formal education program, distribution of manual algorithms for intravenous insulin therapy - optimized by the users, based on the modified Yale protocol - and informal training of the nursing staff. The use of electronic blood glucose control systems was supported, and the results were recorded prospectively. RESULTS: The first phase of the program (formal education) lead to improvement of the time within the euglycemic interval (28% to 37%). In the second phase, euglycemia was achieved 66% of the time, and the incidence of hypoglycemia was decreased. The percentage of patients on intravenous insulin infusion at 48 hours from admission increased from 6% to 35%. CONCLUSION: The phased implementation of a formal education program, fostering the use of electronic insulin therapy protocols and dynamic manuals, received good adherence and has shown to be safe and effective for blood glucose control in critically ill patients, with a concomitant decrease in hypoglycemia.
OBJETIVO: Duplicar a percentagem de tempo no intervalo glicêmico 100 - 180mg/dL nos primeiros 3 meses após implementação faseada de um programa de educação formal e, posteriormente, de um protocolo de insulinoterapia, sem condicionar um aumento da frequência de hipoglicemia. MÉTODOS: Foi feita a avaliação retrospetiva do controle glicêmico pré-intervenção. Foram realizados: implementação de um programa formal de educação; distribuição de algoritmos manuais de insulinoterapia endovenosa - otimizados pelos utilizadores, a partir do protocolo de Yale modificado - e formação informal da equipe de enfermagem. Foi dado apoio à utilização dos sistemas eletrônicos de controle glicêmico e do registo prospetivo dos resultados. RESULTADOS: A primeira fase do programa (educação formal) melhorou o tempo no intervalo euglicêmico (28% para 37%). A segunda fase permitiu atingir 66% do tempo de euglicemia, com diminuição das hipoglicemias. A percentagem de doentes sob perfusão endovenosa de insulina às 48 horas de internamento aumentou (6% para 35%). CONCLUSÃO: A implementação faseada de um programa formal de educação que favoreceu a aplicação de protocolos de insulinoterapia eletrônicos e manuais dinâmicos demonstrou ter aderência e ser segura e eficaz no controle glicêmico no doente crítico, com diminuição concomitante das hipoglicemias.
Asunto(s)
Control Glucémico , Hiperglucemia , Glucemia , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/epidemiología , Hipoglucemiantes/efectos adversos , Unidades de Cuidados Intensivos , Portugal , Estudios RetrospectivosRESUMEN
OBJECTIVE: To carry out a scoping review of the meta-analyses published regarding about coronavirus disease 2019 (COVID-19), evaluating their main characteristics, publication trends and methodological quality. METHODS: A bibliometric search was performed in PubMed®, Scopus and Web of Science, focusing on meta-analyses about COVID-2019 disease. Bibliometric and descriptive data for the included articles were extracted and the methodological quality of the included meta-analyses was evaluated using A Measurement Tool to Assess Systematic Reviews. RESULTS: A total of 348 meta-analyses were considered eligible. The first meta-analysis about COVID-19 disease was published on February 26, 2020, and the number of meta-analyses has grown rapidly since then. Most of them were published in infectious disease and virology journals. The greatest number come from China, followed by the United States, Italy and the United Kingdom. On average, these meta-analyses included 23 studies and 15,200 participants. Overall quality was remarkably low, and only 8.9% of them could be considered as of high confidence level. CONCLUSION: Although well-designed meta-analyses about COVID-19 disease have already been published, the majority are of low quality. Thus, all stakeholders playing a role in COVID-19 deseases, including policy makers, researchers, publishers and journals, should prioritize well-designed meta-analyses, performed only when the background information seem suitable, and discouraging those of low quality or that use suboptimal methods.
Asunto(s)
Bibliometría , COVID-19 , China , Bases de Datos Bibliográficas , Humanos , Italia , Metaanálisis como Asunto , Revisiones Sistemáticas como Asunto , Reino Unido , Estados UnidosRESUMEN
RESUMO Objetivo: Duplicar a percentagem de tempo no intervalo glicêmico 100 - 180mg/dL nos primeiros 3 meses após implementação faseada de um programa de educação formal e, posteriormente, de um protocolo de insulinoterapia, sem condicionar um aumento da frequência de hipoglicemia. Métodos: Foi feita a avaliação retrospetiva do controle glicêmico pré-intervenção. Foram realizados: implementação de um programa formal de educação; distribuição de algoritmos manuais de insulinoterapia endovenosa - otimizados pelos utilizadores, a partir do protocolo de Yale modificado - e formação informal da equipe de enfermagem. Foi dado apoio à utilização dos sistemas eletrônicos de controle glicêmico e do registo prospetivo dos resultados. Resultados: A primeira fase do programa (educação formal) melhorou o tempo no intervalo euglicêmico (28% para 37%). A segunda fase permitiu atingir 66% do tempo de euglicemia, com diminuição das hipoglicemias. A percentagem de doentes sob perfusão endovenosa de insulina às 48 horas de internamento aumentou (6% para 35%). Conclusão: A implementação faseada de um programa formal de educação que favoreceu a aplicação de protocolos de insulinoterapia eletrônicos e manuais dinâmicos demonstrou ter aderência e ser segura e eficaz no controle glicêmico no doente crítico, com diminuição concomitante das hipoglicemias.
ABSTRACT Objective: To double the percentage of time within the 100 - 180mg/dL blood glucose range in the first three months following a phased implementation of a formal education program, and then, of an insulin therapy protocol, without entailing an increased incidence of hypoglycemia. Methods: The pre-intervention glycemic control was assessed retrospectively. Next, were carried out the implementation of a formal education program, distribution of manual algorithms for intravenous insulin therapy - optimized by the users, based on the modified Yale protocol - and informal training of the nursing staff. The use of electronic blood glucose control systems was supported, and the results were recorded prospectively. Results: The first phase of the program (formal education) lead to improvement of the time within the euglycemic interval (28% to 37%). In the second phase, euglycemia was achieved 66% of the time, and the incidence of hypoglycemia was decreased. The percentage of patients on intravenous insulin infusion at 48 hours from admission increased from 6% to 35%. Conclusion: The phased implementation of a formal education program, fostering the use of electronic insulin therapy protocols and dynamic manuals, received good adherence and has shown to be safe and effective for blood glucose control in critically ill patients, with a concomitant decrease in hypoglycemia.