Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285157

RESUMEN

A persistent challenge in brewing is the efficient utilization of hop bitter acids, with about 50% of these compounds precipitating with trub during wort boiling. This study aims to uncover the correlation between the barley cultivar proteome and hop bitter acid utilization during wort boiling. Therefore, comparative experiments were conducted using two cultivars, Liga and Solist, with varying proteomes to identify specific proteins' role in hop bitter acids precipitation. High-performance liquid chromatography (HPLC) was used to measure hop bitter acid content, while liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify and identify proteins. The 107 protein groups, particularly enzymes linked to barley metabolic defense mechanisms, exhibited significant differences between the two cultivars. Results revealed significantly lower α- and iso-α-acid content in wort produced from the barley cultivar Liga. This study highlights the critical role of the barley proteome in optimizing process efficiency by enhancing hop utilization through barley cultivar selection.

2.
J Agric Food Chem ; 71(14): 5700-5711, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989404

RESUMEN

Hop bitter acids are used in the brewing industry to give beer bitterness. However, much of this bitterness is lost during processing, specifically during the wort boiling step. One of the major causes might be the interaction with protein-protein complexes. Therefore, the aim of this study was to clarify the role of hop bitter acids in protein aggregate formation using a proteomic approach. The effect of hop addition on protein composition was analyzed by liquid chromatography-mass spectrometry/MS (LC-MS/MS), and further analyses were performed to characterize the wort before and after boiling. Addition of hop bitter acids yielded a change in wort protein profiles, and hop bitter acids were found to bind primarily to less abundant proteins which are not related to beer quality traits, such as foam or haze. Wort protein aggregate profiles were revealed, and findings from this study suggested the precipitation of particular proteins in the aggregates during boiling when hops were added.


Asunto(s)
Humulus , Humulus/metabolismo , Agregado de Proteínas , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Ácidos/metabolismo
3.
Int J Sport Nutr Exerc Metab ; 31(1): 21-31, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248438

RESUMEN

This study evaluated the effects of inspiratory muscle training (IMT) in glucose control and respiratory muscle function in patients with diabetes. It was a randomized clinical trial conducted at the Physiopathology Laboratory of the Hospital de Clínicas de Porto Alegre. Patients with Type 2 diabetes were randomly assigned to IMT or placebo-IMT (P-IMT), performed at 30% and 2% of maximal inspiratory pressure, respectively, every day for 12 weeks. The main outcome measures were HbA1c, glycemia, and respiratory muscle function. Thirty patients were included: 73.3% women, 59.6 ± 10.7 years old, HbA1c 8.7 ± 0.9% (71.6 ± 9.8 mmol/mol), and glycemia 181.8 ± 57.8 mg/dl (10.5 ± 3.2 mmol/L). At the end of the training, HbA1c was 8.2 ±0.3% (66.1 ± 3.3 mmol/mol) and 8.7 ± 0.3% (71.6 ± 3.3 mmol/mol) for the IMT and P-IMT groups, respectively (p = .8). Fasting glycemia decreased in both groups with no difference after training although it was lower in IMT at 8 weeks: 170.0 ± 11.4 mg/dl(9.4 ± 0.6 mmol/L) and 184.4 ± 15.0 mg/dl (10.2 ± 0.8 mmol/L) for IMT and P-IMT, respectively (p < .05). Respiratory endurance time improved in the IMT group (baseline = 325.9 ± 51.1 s and 305.0 ± 37.8 s; after 12 weeks = 441.1 ± 61.7 s and 250.7 ± 39.0 s for the IMT and P-IMT groups, respectively; p < .05). Considering that glucose control did not improve, IMT should not be used as an alternative to other types of exercise in diabetes. Higher exercise intensities or longer training periods might produce better results. The clinical trials identifier is NCT03191435.


Asunto(s)
Glucemia/metabolismo , Ejercicios Respiratorios , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Fuerza Muscular , Músculos Respiratorios/fisiología , Adulto , Anciano , Albuminuria , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/orina , Femenino , Hemoglobina Glucada/análisis , Humanos , Análisis de Intención de Tratar , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Espirometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA