RESUMEN
BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.
Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Ivermectina/farmacología , Malaria/transmisión , Plasmodium vivax/efectos de los fármacos , Animales , Anopheles/parasitología , Brasil , Cloroquina/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Femenino , Humanos , Insectos Vectores/parasitología , Ivermectina/administración & dosificación , Ivermectina/sangre , Ivermectina/metabolismo , Malaria/sangre , Oocistos/efectos de los fármacos , Oocistos/patogenicidad , Primaquina/farmacologíaRESUMEN
BACKGROUND: Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. RESULTS: Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. CONCLUSIONS: This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.
Asunto(s)
Oocistos/parasitología , Oocistos/ultraestructura , Plasmodium/fisiología , Plasmodium/ultraestructura , Esporozoítos/fisiología , Esporozoítos/ultraestructura , Animales , Aves , Femenino , Humanos , Estadios del Ciclo de Vida , Ratones , Microscopía Electrónica de RastreoRESUMEN
Sarconesiopsis magellanica is a forensically relevant necrophagous blowfly that can aid in determining the post-mortem interval (PMI) as it is the first to colonise decomposing corpses. The blowfly has been reported in several South-American countries including Colombia, in high-altitude regions ranging from 1200 to 3100 m above sea level. The present study reports this blowfly's life cycle and an analysis of its reproductive and population parameters under laboratory conditions for the first time. Six successive generations of flies were produced with an average of 65.38% adults emerging with respect to the total number of puparia. The shortest life cycle from egg to adult emergence was found in individuals fed on a lyophilised liver (LL) diet, while the longest one was found in individuals fed with an egg-powdered milk (E-PM) diet; intermediate values were found when the pig liver (PL) diet was tested. The greatest adult longevity was achieved when the PL diet was used, the LL diet giving the shortest. The population parameters based on the horizontal life table were: net reproductive rate (Ro)=447.752±9.9, mean generational time (Tc)=18.18±0.38, natural population increase rate (r(m))=0.145 and finite population increase rate (λ)=1.398. This blowfly colony represents a valuable asset for both basic and applied studies. Members of the S. magellanica colony so established were used for analysing the life-cycle, reproductive and population parameters, and further medical and forensic application studies are currently underway.