Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36981097

RESUMEN

The peels of guaraná (Paullinia cupana) fruit contain abundant carotenoid content, which has demonstrated health benefits. However, these compounds are unstable in certain conditions, and their application into food products can be changed considering the processing parameters. This study aimed to encapsulate the carotenoid-rich extract from guaraná peels by spray drying (SD), characterize the microparticles, investigate their influence on the pasting properties of oatmeal paste, and evaluate the effects of temperature and shear on carotenoid stability during the preparation of this product. A rheometer with a pasting cell was used to simulate the extrusion conditions. Temperatures of 70, 80, and 90 °C and shear rates of 50 and 100 1/s were the parameters evaluated. Microparticles with a total carotenoid content between 40 and 96 µg/g were obtained. Over the storage period, carotenoid stability, particle size, color, moisture, and water activity varied according to the core:carrier material proportion used. Afterward, the formulation SD1:2 was selected to be incorporated in oatmeal, and the paste viscosity was influenced by the addition of this powder. ß-carotene retention was higher than that of lutein following the treatment. The less severe treatment involving a temperature of 70 °C and a shear rate of 50 1/s exhibited better retention of total carotenoids, regardless of whether the carotenoid-rich extract was encapsulated or non-encapsulated. In the other treatments, the thermomechanical stress significantly influenced the stability of the total carotenoid. These results suggest that the addition of encapsulated carotenoids to foods prepared at higher temperatures has the potential for the development of functional and stable products.

2.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364352

RESUMEN

Reducing waste, using byproducts, and natural food additives are important sustainability trends. In this context, the aim of this study was to produce and evaluate a natural food dye, extracted from pumpkin byproducts, powdered and protected by spray-chilling (SC) and a combination of spray-drying and spray-chilling techniques (SDC). The extract was obtained using ethanol as solvent; vegetable fat and gum Arabic were used as carriers. Formulations were prepared with the following core:carrier ratios: SC 20 (20:80), SC 30 (30:70), SC 40 (40:60), SDC 5 (5:95), SDC 10 (10:90), and SDC 15 (15:85). The physicochemical properties of the formed microparticles were characterised, and their storage stability was evaluated over 90 days. The microparticles exhibited colour variation and size increase over time. SDC particles exhibited the highest encapsulation efficiency (95.2-100.8%) and retention of carotenoids in the storage period (60.8-89.7%). Considering the carotenoid content and its stability, the optimal formulation for each process was selected for further analysis. All of the processes and formulations produced spherical particles that were heterogeneous in size. SDC particles exhibited the highest oxidative stability index and the highest carotenoid release in the intestinal phase (32.6%). The use of combined microencapsulation technologies should be considered promising to protect carotenoid compounds.


Asunto(s)
Cucurbita , Cucurbita/química , Polvos , Carotenoides/química , Composición de Medicamentos/métodos , Extractos Vegetales/química
3.
Foods ; 11(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076743

RESUMEN

Guaraná byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guaraná peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds.

4.
Lipids Health Dis ; 16(1): 78, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28410612

RESUMEN

BACKGROUND: Palm olein is used in infant formula fat blends in order to match the fatty acid profile of human milk. While the effects on fatty acid balance have been evaluated, the use of palm olein in combination with palm kernel oil and supplementation with docosahexaenoic acid (DHA) and arachidonic acid (ARA) has not been similarly assessed in infants. This study evaluated the effects of infant formulas containing different fat compositions on the balance of fat, fatty acids, and calcium. METHODS: In this randomized, crossover, double-blinded study, 33 healthy term infants (68-159 ± 3 days of age at enrollment) were fed two formulas for 14 days in a tolerance period, followed by a 4-day metabolic balance period in 17 of the male subjects. The study compared two commercially available milk-based powdered formulas in Brazil; the PALM formula contained palm olein (44%), kernel palm oil (21.7%), and canola oil (18.5%) as the predominant fats, whereas the NoPALM formula contained other fat sources. RESULTS: Fat absorption (%) was greater for NoPALM versus PALM-fed infants (96.55 and 95.50%, respectively; p = 0.023). The absorption percentage of palmitic acid (C16:0) did not differ significantly between formulas (p > 0.05), but this acid was excreted at significantly higher concentrations in the PALM (29.42 mg/kg/day) than in the NoPALM (12.28 mg/kg/day) formula groups. DHA and ARA absorption percentages were also higher in NoPALM-fed infants. Calcium absorption was higher in NoPALM-fed infants (58.00%) compared to those fed PALM (40.90%), but the difference was not significant (p = 0.104) when calcium intake was used as a covariate. However, calcium retention was higher in NoPALM-fed infants compared to that in PALM-fed infants with or without calcium intake as a covariate. Adverse events did not differ between groups (p > 0.05). CONCLUSIONS: The absorption of essential fatty acids was similar for both formulas; however, long-chain polyunsaturated fatty acids (DHA and ARA) were better absorbed from the NoPALM formula. Fat absorption and calcium retention were lower in term infants fed the PALM-based formula. CLINICAL TRIAL REGISTRATION: Clinicaltrial.gov # NCT00941564 .


Asunto(s)
Ácido Araquidónico/administración & dosificación , Grasas de la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Glicéridos/administración & dosificación , Fórmulas Infantiles/análisis , Aceites de Plantas/administración & dosificación , Aceite de Brassica napus/administración & dosificación , Ácido Araquidónico/orina , Brasil , Calcio/orina , Estudios Cruzados , Grasas de la Dieta/orina , Ácidos Docosahexaenoicos/orina , Método Doble Ciego , Heces/química , Absorción Gastrointestinal/fisiología , Glicéridos/orina , Humanos , Lactante , Recién Nacido , Masculino , Leche Humana/química , Leche Humana/metabolismo , Aceite de Palma , Ácido Palmítico/orina , Aceites de Plantas/metabolismo , Aceite de Brassica napus/metabolismo
5.
Appl Biochem Biotechnol ; 180(6): 1110-1127, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27357823

RESUMEN

Simultaneous synthesis of polyhydroxyalkanoates (PHAs) and polyglutamic acid (PGA) was investigated in cultures of Cupriavidus necator IPT 026, C. necator IPT 027, C. necator IPT 029, and Bacillus megaterium INCQS 425 strains in a medium containing 2.0 % sucrose or crude glycerol from biodiesel (CGB), in an orbital shaker (35 °C, 180 rpm, 72 h). All the strains tested simultaneously produced PHA and PGA in a medium containing CGB. The C. necator IPT026 culture provided higher molecular mass PHA and PGA (1128.55 and 835.56 kDa, respectively). B. megaterium INCQS 425 promoted PGA production (1.90 g L-1) with higher crystalline melting temperature (84.04 °C) and higher initial decomposition temperature (247.10 °C). Furthermore, the latter culture promoted the production of medium- and long-chain PHA (0.78 g L-1) with high crystalline melting temperatures (∼170 °C) and high initial decomposition temperature (307.53 °C) and low degree of crystallinity (20.2 %). These characteristics render these PHAs more appropriate and suitable for processes that require high temperatures, such as extrusion, increasing the possibility of industrial applications, especially in the packaging sector.


Asunto(s)
Bacterias/metabolismo , Biocombustibles/microbiología , Biopolímeros/biosíntesis , Espacio Extracelular/química , Glicerol/metabolismo , Polihidroxialcanoatos/biosíntesis , Biomasa , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Peso Molecular , Ácido Poliglutámico/biosíntesis , Estándares de Referencia , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA