Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Obes Surg ; 31(6): 2599-2606, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735395

RESUMEN

BACKGROUND: Telomeres are structures located at the ends of chromosomes associated with a protein complex, known as the shelterin complex. In individuals with obesity, excess adipose tissue plays a key role in inducing a chronic and systemic inflammatory state, which can cause TL shortening. In this context, bariatric surgery is one of the most effective treatment modalities in improving metabolic control. AIM: Therefore, the present study aimed to evaluate how a short postoperative period of gastric bypass affects TL and expression of POT1, TRF1 and TRF2 genes. METHODS: Forty-eight women submitted to RYGB were evaluated before and after 6 months of the surgical procedure. Anthropometric measures of body weight and height (BMI), abdominal circumference (AC), body composition, food intake and blood collection for biochemical evaluation, TL analysis (DNA), and gene expression (RNA) were collected at each moment. RESULTS: There was a reduction of weight, BMI, AC, FM and FFM as well as of glycemia, total cholesterol, LDL-cholesterol, and triglycerides after gastric bypass. No difference in energy intake and macronutrients consumption was observed. There was no significant change in TL, but there was a significant increase of POT1 and TRF1 gene expression after surgery, while TRF2 expression did not change. CONCLUSIONS: Despite bariatric surgery is not capable of increasing telomere length in a short-term period, no reduction is observed; additionally, we found a correlation between serum triglycerides concentration and TL. The increase of POT1 and TRF1 gene expression may explain the maintenance of the TL after 6 months postoperative period.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Femenino , Expresión Génica , Humanos , Obesidad Mórbida/cirugía , Estudios Prospectivos , Telómero/genética
2.
PLoS One ; 13(8): e0202263, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30118500

RESUMEN

Naturally-occurring chalcones and synthetic chalcone analogues have been demonstrated to have many biological effects, including anti-inflammatory, anti-malarial, anti-fungal, and anti-oxidant/anti-cancerous activities. Compared to other chalcones, trans-chalcone exhibits superior inhibitory activity in cancer cell growth as shown via in vitro assays, and exerts anti-cancerous effects via the activation of the p53 tumor suppressor protein. Thus, characterization of the specific mechanisms, by which trans-chalcone activates p53, can aid development of new chemotherapeutic drugs that can be used individually or synergistically with other drugs. In this report, we found that trans-chalcone modulates many p53 target genes, HSP40 being the most induced gene in the RNA-Seq data using trans-chalcone-treated cells. CRM1 is also inhibited by trans-chalcone, resulting in the accumulation of p53 and other tumor suppressor proteins in the nucleus. Similar effects were seen using trans-chalcone derivatives. Overall, trans-chalcone could provide a strong foundation for the development of chalcone-based anti-cancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Chalcona/farmacología , Proteínas del Choque Térmico HSP40/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción Activador 3/metabolismo , Antineoplásicos/química , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Chalcona/química , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Carioferinas/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteína Exportina 1
3.
Int J Mol Sci ; 19(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29966255

RESUMEN

Curcumin is a potential anticancer drug with poor bioavailability, which limits its clinical use as a therapeutic agent. The aim of this study was a preliminary evaluation of the curcumin analogue CH-5 as a cytotoxic agent in human osteosarcoma cell lines U2OS, MG-63, and Saos-2. CH-5 inhibited cell viability at lower concentrations than curcumin, leading to the induction of apoptosis. The cellular levels of the transcription factors p53 and Sp1 affect the expression of cellular pathways that lead to apoptosis. CH-5 increased p53 protein levels in U2OS cells and reduced Sp1 levels, with a consequent effect on the expression of their target genes DNA methyltransferase 1 (DNMT1) and growth arrest and DNA damage-inducible 45 alpha gene (Gadd45a). CH-5 repressed DNMT1 and increased Gadd45a mRNA expression, which was dependent on p53, as this effect was only observed in the colorectal cancer cell line HCT116 with active p53, but not in the isogenic p53-deficient HCT116 cells. CH-5 also reduced the protein levels of DNMT1, which led to the upregulation of Gadd45a. These results suggest that CH-5 has potentially higher anticancer activity than curcumin, which is associated with the expression of apoptosis-associated genes regulated by the transcription factors Sp1 and p53. Future work on CH-5 will define the therapeutic potential of this compound in vivo.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/análogos & derivados , Osteosarcoma/metabolismo , Factor de Transcripción Sp1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Humanos , Concentración 50 Inhibidora
4.
Obes Surg ; 28(1): 176-186, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28735374

RESUMEN

BACKGROUND: Differential gene expression in peripheral blood mononuclear cells (PBMCs) after Roux-en-Y gastric bypass (RYGB) is poorly characterized. Markers of these processes may provide a deeper understanding of the mechanisms that underlie these events. The main goal of this study was to identify changes in PBMC gene expression in women with obesity before and 6 months after RYGB-induced weight loss. METHODS: The ribonucleic acid (RNA) of PBMCs from 13 obese women was analyzed before and 6 months after RYGB; the RNA of PBMCs from nine healthy women served as control. The gene expression levels were determined by microarray analysis. Significant differences in gene expression were validated by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: Microarray analysis for comparison of the pre- and postoperative periods showed that 1366 genes were differentially expressed genes (DEGs). The main pathways were related to gene transcription; lipid, energy, and glycide metabolism; inflammatory and immunological response; cell differentiation; oxidative stress regulation; response to endogenous and exogenous stimuli; substrate oxidation; mTOR signaling pathway; interferon signaling; mitogen-activated protein kinases (MAPK), cAMP response element binding protein (CREB1), heat shock factor 1 (HSF1), and sterol regulatory element binding protein 1c (SREBP-1c) gene expression; adipocyte differentiation; and methylation. CONCLUSIONS: Six months after bariatric surgery and significant weight loss, many molecular pathways involved in obesity and metabolic diseases change. These findings are an important tool to identify potential targets for therapeutic intervention and clinical practice of nutritional genomics in obesity.


Asunto(s)
Cirugía Bariátrica , Leucocitos Mononucleares/metabolismo , Obesidad Mórbida/genética , Obesidad Mórbida/cirugía , Transcriptoma , Pérdida de Peso/genética , Adulto , Cirugía Bariátrica/rehabilitación , Estudios de Casos y Controles , Femenino , Derivación Gástrica/rehabilitación , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/genética , Obesidad Mórbida/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA