Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37597150

RESUMEN

In this study, we report on the synthesis of ternary photocatalysts comprising TiO2/SnO2/g-C3N4 for the degradation of ciprofloxacin (CIP) in water. SnO2 nanoparticles were synthesized via the sol-gel method, while g-C3N4 was obtained through melamine calcination. Commercial TiO2 and SnO2 nanopowders were also used. The heterojunctions were synthesized via the wet impregnation method. The photocatalysts were characterized via various techniques, including XRD, TEM, STEM, FTIR, N2 adsorption, UV-Vis DR, and hole tests. Photocatalytic degradation tests of CIP were carried out under UV, visible, and solar radiation. The P25/npA/g-C3N4 (90/10) material exhibited the best performance, achieving CIP degradation of over 97%. The synthesized materials demonstrated excellent initial adsorption of CIP, around 30%, which facilitated subsequent degradation. Notably, the CIP photocatalytic degradation tests performed under solar radiation showed a synergistic effect between the base materials and carbon nitride in highly energetic environments. These results highlight the effectiveness of ternary photocatalysts TiO2/SnO2/g-C3N4 for CIP degradation, particularly under solar radiation.

2.
ACS Omega ; 6(18): 11840-11848, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056338

RESUMEN

Nanoparticulate double-heterojunction photocatalysts comprising TiO2(Anatase)/WO3/TiO2(Rutile) were produced by a sol-gel method. The resulting photocatalysts exhibit clear synergistic effects when tested toward the degradation of methyl orange under both UV and visible light. Kinetic studies indicate that the degradation rate on the best double-heterojunction photocatalyst (10 wt % WO3-TiO2) depends mainly on the amount of dye concentration, contrary to pure oxides in which the degradation rate is limited by diffusion-controlled processes. The synergistic effects were confirmed through systematic and careful studies including holes and OH radical formation, X-ray diffraction, electron microscopy, elemental analysis, UV-vis diffuse reflectance spectroscopy, and surface area analysis. Our results indicate that the successful formation of a double heterojunction in the TiO2(Anatase)/WO3/TiO2(Rutile) system leads to enhanced photoactivity when compared to individual oxides and commercial TiO2 P25.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA