Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 225: 115606, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878267

RESUMEN

The elimination of heavy metal ion contaminants from residual waters is critical to protect humans and the environment. The natural clay (dolomite and quartz) based composite Fe3O4 nanoparticles (DQ@Fe3O4) has been largely explored for this purpose. Experimental variables such as temperature, pH, heavy metal concentration, DQ@Fe3O4 dose, and contact time were optimized in details. The DQ@Fe3O4 nanocomposite was found to achieve maximum removals of 95.02% for Pb2+ and 86.89% for Cd2+, at optimal conditions: pH = 8.5, adsorbent dose = 2.8 g L-1, the temperature = 25 °C, and contact time = 140 min, for 150 mg L-1 heavy metal ion initial concentration. The Co-precipitation of dolomite-quartz by Fe3O4 nanoparticles was evidenced by SEM-EDS, TEM, AFM, FTIR, XRD, and TGA analyses. Further, the comparison to the theoretical predictions, of the adsorption kinetics, and at the equilibrium, of the composite, revealed that they fit, respectively to, the pseudo-second-order kinetic, and Langmuir isotherm. These both models were found to better describe the metal binding onto the DQ@Fe3O4 surface. This suggested a homogenous monolayer sorption dominated by surface complexation. Additionally, thermodynamic data have shown that the adsorption of heavy metal ions is considered a spontaneous and exothermic process. Moreover, Monte Carlo (MC) simulations were performed in order to elucidate the interactions occurring between the heavy metal ions and the DQ@Fe3O4 nanocomposite surface. A good correlation was found between the simulated and the experimental data. Moreover, based on the negative values of the adsorption energy (Eads), the adsorption process was confirmed to be spontaneous. In summary, the as-prepared DQ@Fe3O4 can be considered a low-cost-effective heavy metals adsorbent, and it has a great potential application for wastewater treatment.


Asunto(s)
Metales Pesados , Nanocompuestos , Contaminantes Químicos del Agua , Humanos , Cadmio/análisis , Plomo , Cuarzo , Adsorción , Iones , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 307(Pt 3): 135952, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35964716

RESUMEN

Slaughterhouse wastewater (SWW) contains a significant volume of highly polluted organic wastes. These include blood, fat, soluble proteins, colloidal particles, suspended materials, meat particles, and intestinal undigested food that consists of higher concentrations of organics such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrogen and phosphorus hence an efficient treatment is required before discharging into the water bodies. The effluent concentrations and performance of simultaneous sequential batch biofilm reactor (SBBR) with recycled plastic carrier media support are better than the local single-stage sequential batch reactor (SBR), which is lacking in the literature in terms of COD, NH3, NO3, and PO4 treatment efficiency. The present study reports a novel strategy to remove the above mentioned contaminants using an intermittently aerated SBBR with recycled plastic carrier media support along with simultaneous nitrification and denitrification. The central composite design was evaluated to optimize the treatment performance of seven different process variables including; different alternating conditions (Oxic/anoxic) for aeration cycles (3/2 h in a 6 h cycle, 6/5 h in a 12 h cycle and 9/8 h in an 18 h cycle) and hydraulic retention time (6, 12 and 18 h). The average removal efficiencies are 94.5% for NH3, 93% for NO3 and 90.1% for PO4, and 99% for COD. The study reveals that the denitrification in the post-anoxic phase was more efficient than the pre-anoxic phase for pollutant removal and maintaining higher quality effluent. The effluent concentrations and performance of simultaneous SBBR with recycled polyethylene carrier support media were better than local SBR system in terms of COD, NH3, NO3 and PO4 treatment efficiency. Results stipulated the suitability of SBBR for wastewater treatment and reusability as a sustainable approach for wastewater management under optimum conditions.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Mataderos , Biopelículas , Reactores Biológicos , Nitrógeno/metabolismo , Oxígeno/metabolismo , Fósforo , Plásticos , Polietilenos , Eliminación de Residuos Líquidos/métodos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA