Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402892, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246096

RESUMEN

Developing new methods to control the size and shape of the helical structures adopted by foldamers is highly important as the secondary structure displayed by these supramolecular scaffolds often dictates their activity and function. Herein, we report on a systematic study demonstrating that the helical pitch of ortho-azobenzene/2,6-pyridyldicarboamide foldamers can be readily controlled through the nature of the terminal functionality. Remarkably, simply through varying the end group of the foldamer, and without modifying any other structural features of the scaffold, the helical pitch can be over doubled in magnitude (from 3.4 Å to 7.3 Å). Additionally, crystallographic analysis of a library ten foldamers has identified general trends in the influence of a range of terminal functionalities, including carboxylbenzyl (Cbz), diphenylcarbamyl (N(Ph)2), ferrocene (Fc) and tert-butyloxycarbonyl (Boc), in controlling the folding behaviour of these supramolecular scaffolds. These studies could prove useful in the future development of functional foldamers which adopt specific sizes and shapes.

2.
Chemistry ; : e202402423, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137164

RESUMEN

We report on dual, light-responsive and redox-active foldamers that demonstrate reversible and robust stimuli-induced behaviour. Herein, UV/Vis, 1H NMR and circular dichroism (CD) spectroscopy and cyclic voltammetry have been used to establish the reversibility and highly robust nature of the light- and redox-driven behaviour of these new foldamers with minimal levels of fatigue observed even upon multiple cyclic treatments with irradiative/non-irradiative and oxidative/reductive conditions. This proof-of-concept work paves the way towards the creation of novel stimuli-responsive foldamers of increasing sophistication capable of demonstrating reversible and robust responses to multiple distinct stimuli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA