Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 55(19): 2773-2776, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30758001

RESUMEN

Tin-germanium alloys are increasingly of interest as optoelectronic and thermoelectric materials as well as materials for Li/Na ion battery electrodes. However, the lattice incompatibility of bulk Sn and Ge makes creating such alloys challenging. By exploiting the unique strain tolerance of nanosized crystals, we have developed a facile synthetic method for homogeneous SnxGe1-x alloy nanocrystals with composition varying from essentially pure Ge to 95% Sn while still maintaining the cubic structure.

2.
ACS Nano ; 12(12): 12587-12596, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30495927

RESUMEN

Colloidal quantum dots (QDs) have attracted considerable attention as promising materials for solution-processable electronic and optoelectronic devices. Copper indium selenium sulfide (CuInSe xS2- x or CISeS) QDs are particularly attractive as an environmentally benign alternative to the much more extensively studied QDs containing toxic metals such as Cd and Pb. Carrier transport properties of CISeS-QD films, however, are still poorly understood. Here, we aim to elucidate the factors that control charge conductance in CISeS QD solids and, based on this knowledge, develop practical approaches for controlling the polarity of charge transport and carrier mobilities. To this end, we incorporate CISeS QDs into field-effect transistors (FETs) and perform detailed characterization of these devices as a function of the Se/(Se+S) ratio, surface treatment, thermal annealing, and the identity of source and drain electrodes. We observe that as-synthesized CuInSe xS2- x QDs exhibit degenerate p-type transport, likely due to metal vacancies and CuIn'' anti-site defects (Cu1+ on an In3+ site) that act as acceptor states. Moderate-temperature annealing of the films in the presence of indium source and drain electrodes leads to switching of the transport polarity to nondegenerate n-type, which can be attributed to the formation of In-related defects such as InCu•• (an In3+ cation on a Cu1+ site) or Ini••• (interstitial In3+) acting as donors. We observe that the carrier mobilities increase dramatically (by 3 orders of magnitude) with increasing Se/(Se+S) ratio in both n- and p-type devices. To explain this observation, we propose a two-state conductance model, which invokes a high-mobility intrinsic band-edge state and a low-mobility defect-related intragap state. These states are thermally coupled, and their relative occupancies depend on both QD composition and temperature. Our observations suggest that the increase in the relative fraction of Se moves conduction- and valence band edges closer to low-mobility intragap levels. This results in increased relative occupancy of the intrinsic band-edge states and a corresponding growth of the measured mobility. Further improvement in charge-transport characteristics of the CISeS QD samples as well as their stability is obtained by infilling the QD films with amorphous Al2O3 using atomic layer deposition.

3.
J Am Chem Soc ; 139(19): 6644-6653, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28431206

RESUMEN

The use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II-VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acid-base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surface chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-µm-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors.

4.
Nano Lett ; 17(4): 2319-2327, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28253617

RESUMEN

Typical use of colloidal quantum dots (QDs) as bright, tunable phosphors in real applications relies on engineering of their surfaces to suppress the loss of excited carriers to surface trap states or to the surrounding medium. Here, we explore the utility of QDs in an application that actually exploits their propensity toward photoionization, namely within efficient and robust photocathodes for use in next-generation electron guns. In order to establish the relevance of QD films as photocathodes, we evaluate the efficiency of electron photoemission of films of a variety of compositions in a typical electron gun configuration. By quantifying photocurrent as a function of excitation photon energy, excitation intensity and pulse duration, we establish the role of hot electrons in photoemission within the multiphoton excitation regime. We also demonstrate the effect of QD structure and film deposition methods on efficiency, which suggests numerous pathways for further enhancements. Finally, we show that QD photocathodes offer superior efficiencies relative to standard copper cathodes and are robust against degradation under ambient conditions.

5.
J Am Chem Soc ; 139(6): 2152-2155, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28099009

RESUMEN

We demonstrate controlled synthesis of discrete two-dimensional (2D) PbSe nanoplatelets (NPLs), with measurable photoluminescence, via oriented attachment directed by quantum dot (QD) surface chemistry. Halide passivation is critical to the growth of these (100) face-dominated NPLs, as corroborated by density functional theory studies. PbCl2 moieties attached to the (111) and (110) of small nanocrystals form interparticle bridges, aligning the QDs and leading to attachment. We find that a 2D bridging network is energetically favored over a 3D network, driving the formation of NPLs. Although PbI2 does not support bridging, its presence destabilizes the large (100) faces of NPLs, providing means for tuning NPL thickness. Spectroscopic analysis confirms the predicted role of thickness-dependent quantum confinement on the NPL band gap.

6.
ACS Nano ; 10(12): 10829-10841, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27936587

RESUMEN

One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. Here we show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. This process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. Compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the "productive" Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.

7.
J Am Chem Soc ; 138(45): 14954-14961, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27756131

RESUMEN

Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II-VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8-3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the corresponding transitions on the characteristics of energy transfer between the Mn ion and the semiconductor host.

8.
Chem Rev ; 116(18): 10513-622, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677521

RESUMEN

The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.

9.
J Am Chem Soc ; 137(48): 15074-7, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26545157

RESUMEN

The rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead to elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.

10.
Nano Lett ; 15(4): 2685-92, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25793644

RESUMEN

We conduct spectroscopic and theoretical studies of photoluminescence (PL) from Ge quantum dots (QDs) fabricated via colloidal synthesis. The dynamics of late-time PL exhibit a pronounced dependence on temperature and applied magnetic field, which can be explained by radiative decay involving two closely spaced, slowly emitting exciton states. In 3.5 nm QDs, these states are separated by ∼1 meV and are characterized by ∼82 µs and ∼18 µs lifetimes. By using a four-band formalism, we calculate the fine structure of the indirect band-edge exciton arising from the electron-hole exchange interaction and the Coulomb interaction of the Γ-point hole with the anisotropic charge density of the L-point electron. The calculations suggest that the observed PL dynamics can be explained by phonon-assisted recombination of excitons thermally distributed between the lower-energy "dark" state with the momentum projection J = ± 2 and a higher energy "bright" state with J = ± 1. A fairly small difference between lifetimes of these states is due to their mixing induced by the exchange term unique to crystals with a highly symmetric cubic lattice such as Ge.

11.
ACS Nano ; 9(1): 539-47, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25427007

RESUMEN

The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR)-active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intraband relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from the CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogeneous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe and the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.

12.
Adv Mater ; 26(47): 8034-40, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25381683

RESUMEN

CdSe/Zn1-X CdX S core/shell heterostructured quantum dots (QDs) with varying shell thicknesses are studied as the active material in a series of electroluminescent devices. "Giant" CdSe/Zn1-X CdX S QDs (e.g., CdSe core radius of 2 nm and Zn1-X CdX S shell thickness of 6.3 nm) demonstrate a high device efficiency (peak EQE = 7.4%) and a record-high brightness (>100 000 cd m(-2) ) of deep-red emission, along with improved device stability.

13.
ACS Nano ; 8(7): 7288-96, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24909861

RESUMEN

Charged exciton states commonly occur both in spectroscopic studies of quantum dots (QDs) and during operation of QD-based devices. The extra charge added to the neutral exciton modifies its radiative decay rate and also opens an additional nonradiative pathway associated with an Auger process whereby the recombination energy of an exciton is transferred to the excess charge. Here we conduct single-dot spectroscopic studies of Auger recombination in thick-shell ("giant") CdSe/CdS QDs with and without an interfacial alloy layer using time-tagged, time-correlated single-photon counting. In photoluminescence (PL) intensity trajectories of some of the dots, we resolve three distinct states of different emissivities ("bright", "gray", and "dark") attributed, respectively, to the neutral exciton and negative and positive trions. Simultaneously acquired PL lifetime trajectories indicate that the positive trion is much shorter lived than the negative trion, which can be explained by a high density of valence band states and a small hole localization radius (defined by the QD core size), factors that favor an Auger process involving intraband excitation of a hole. A comparison of trion and biexciton lifetimes suggests that the biexciton Auger decay can be treated in terms of a superposition of two independent channels associated with positive- and negative-trion pathways. The resulting interdependence between Auger time constants might simplify the studies of multicarrier recombination by allowing one, for example, to infer Auger lifetimes of trions of one sign based on the measurements of biexciton decay and dynamics of the trions of the opposite sign or, alternatively, estimate the biexciton lifetime based on studies of trion dynamics.

14.
Nat Commun ; 5: 4148, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24938462

RESUMEN

One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core.

15.
Nano Lett ; 14(2): 396-402, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24397307

RESUMEN

Previous single-particle spectroscopic studies of colloidal quantum dots have indicated a significant spread in biexciton lifetimes across an ensemble of nominally identical nanocrystals. It has been speculated that in addition to dot-to-dot variation in physical dimensions, this spread is contributed to by variations in the structure of the quantum dot interface, which controls the shape of the confinement potential. Here, we directly evaluate the effect of the composition of the core-shell interface on single- and multiexciton dynamics via side-by-side measurements of individual core-shell CdSe/CdS nanocrystals with a sharp versus smooth (graded) interface. To realize the latter type of structures we incorporate a CdSexS1-x alloy layer of controlled composition and thickness between the CdSe core and the CdS shell. We observe that while having essentially no effect on single-exciton decay, the interfacial alloy layer leads to a systematic increase in biexciton lifetimes, which correlates with the increase in the biexciton emission efficiency, as inferred from two-photon correlation measurements. These observations provide direct experimental evidence that in addition to the size of the quantum dot, its interfacial properties also significantly affect the rate of Auger recombination, which governs biexciton decay. These findings help rationalize previous observations of a significant heterogeneity in the biexciton lifetimes across similarly sized quantum dots and should facilitate the development of "Auger-recombination-free" colloidal nanostructures for a range of applications from lasers and light-emitting diodes to photodetectors and solar cells.

16.
Nat Commun ; 4: 2887, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24322379

RESUMEN

Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2-x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2-x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime.

17.
Nat Commun ; 4: 2661, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24157692

RESUMEN

Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection.

18.
Sci Rep ; 3: 2004, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23774224

RESUMEN

Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through "doping;" however, persistent electronic doping of these NCs remains a challenge. Here, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmed by inter- and intra-band optical absorption, as well as by carrier dynamics. Finally, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.

19.
ACS Nano ; 7(4): 3411-9, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23521208

RESUMEN

The influence of a CdSexS1-x interfacial alloyed layer on the photophysical properties of core/shell CdSe/CdS nanocrystal quantum dots (QDs) is investigated by comparing reference QDs with a sharp core/shell interface to alloyed structures with an intermediate CdSexS1-x layer at the core/shell interface. To fully realize the structural contrast, we have developed two novel synthetic approaches: a method for fast CdS-shell growth, which results in an abrupt core/shell boundary (no intentional or unintentional alloying), and a method for depositing a CdSexS1-x alloy layer of controlled composition onto the CdSe core prior to the growth of the CdS shell. Both types of QDs possess similar size-dependent single-exciton properties (photoluminescence energy, quantum yield, and decay lifetime). However the alloyed QDs show a significantly longer biexciton lifetime and up to a 3-fold increase in the biexciton emission efficiency compared to the reference samples. These results provide direct evidence that the structure of the QD interface has a significant effect on the rate of nonradiative Auger recombination, which dominates biexciton decay. We also observe that the energy gradient at the core-shell interface introduced by the alloyed layer accelerates hole trapping from the shell to the core states, which results in suppression of shell emission. This comparative study offers practical guidelines for controlling multicarrier Auger recombination without a significant effect on either spectral or dynamical properties of single excitons. The proposed strategy should be applicable to QDs of a variety of compositions (including, e.g., infrared-emitting QDs) and can benefit numerous applications from light emitting diodes and lasers to photodetectors and photovoltaics.


Asunto(s)
Aleaciones/química , Compuestos de Cadmio/química , Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Puntos Cuánticos , Compuestos de Selenio/química , Sulfuros/química , Transporte de Electrón , Ensayo de Materiales , Tamaño de la Partícula
20.
Acc Chem Res ; 46(6): 1261-9, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23530867

RESUMEN

During carrier multiplication (CM), also known as multiexciton generation (MEG), absorption of a single photon produces multiple electron-hole pairs, or excitons. This process can appreciably increase the efficiency of photoconversion, which is especially beneficial in photocatalysis and photovoltaics. This Account reviews recent progress in understanding the CM process in semiconductor nanocrystals (NCs), motivated by the challenge researchers face to quickly identify candidate nanomaterials with enhanced CM. We present a possible solution to this problem by showing that, using measured biexciton Auger lifetimes and intraband relaxation rates as surrogates for, respectively, CM time constants and non-CM energy-loss rates, we can predict relative changes in CM yields as a function of composition. Indeed, by studying PbS, PbSe, and PbTe NCs of a variety of sizes we determine that the significant difference in CM yields for these compounds comes from the dissimilarities in their non-CM relaxation channels, i.e., the processes that compete with CM. This finding is likely general, as previous observations of a material-independent, "universal" volume-scaling of Auger lifetimes suggest that the timescale of the CM process itself is only weakly affected by NC composition. We further explore the role of nanostructure shape in the CM process. We observe that a moderate elongation (aspect ratio of 6-7) of PbSe NCs can cause up to an approximately two-fold increase in the multiexciton yield compared to spherical nanoparticles. The increased Auger lifetimes and improved charge transport properties generally associated with elongated nanostructures suggest that lead chalcogenide nanorods are a promising system for testing CM concepts in practical photovoltaics. Historically, experimental considerations have been an important factor influencing CM studies. To this end, we discuss the role of NC photocharging in CM measurements. Photocharging can distort multiexciton dynamics, leading to erroneous estimations of the CM yield. Here, we show that in addition to distorting time-resolved CM signals, photocharging also creates spectral signatures that mimic CM. This re-emphasizes the importance of a careful analysis of the potential effect of charged species in both optical and photocurrent-based measurements of this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA