Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 742000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912306

RESUMEN

The demand for energy and chemicals is constantly growing, leading to an increase of the amounts of contaminants discharged to the environment. Among these, pharmaceutical molecules are frequently found in treated wastewater that is discharged into superficial waters. Indeed, wastewater treatment plants (WWTPs) are designed to remove organic pollution from urban effluents but are not specific, especially toward contaminants of emerging concern (CECs), which finally reach the natural environment. In this context, it is important to study the fate of micropollutants, especially in a soil aquifer treatment (SAT) context for water from WWTPs, and for the most persistent molecules such as benzodiazepines. In the present study, soils sampled in a reed bed frequently flooded by water from a WWTP were spiked with diazepam and oxazepam in microcosms, and their concentrations were monitored for 97 days. It appeared that the two molecules were completely degraded after 15 days of incubation. Samples were collected during the experiment in order to follow the dynamics of the microbial communities, based on 16S rRNA gene sequencing for Archaea and Bacteria, and ITS2 gene for Fungi. The evolution of diversity and of specific operating taxonomic units (OTUs) highlighted an impact of the addition of benzodiazepines, a rapid resilience of the fungal community and an evolution of the bacterial community. It appeared that OTUs from the Brevibacillus genus were more abundant at the beginning of the biodegradation process, for diazepam and oxazepam conditions. Additionally, Tax4Fun tool was applied to 16S rRNA gene sequencing data to infer on the evolution of specific metabolic functions during biodegradation. It finally appeared that the microbial community in soils frequently exposed to water from WWTP, potentially containing CECs such as diazepam and oxazepam, may be adapted to the degradation of persistent contaminants.

2.
J Hazard Mater ; 359: 47-55, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30014914

RESUMEN

Successive transport experiments of TiO2 nanoparticles (NP) suspension through fractured hard-rock column were done in laboratory. A low ionic strength (IS) water (0.8-1.3 10-3 M) at pH ∼4.5 was used, corresponding to the chemical composition of groundwater where the rock was collected (Naizin, France). The surface charge of TiO2 NP was positive while that of rock was negative favoring NP deposition. SEM/EDX reveals that NP were retained on a broad distribution of mineral collectors along the preferential flow pathways (i.e., fractures). However, a non-negligible amount of NP (∼10%) was transferred through the rock. Divalent cation (Ca2+) was responsible for the reduction of the negative charge of the rock and thus contributed to limit the NP deposition as attested by DLVO model. Blocking of rock surfaces by NP favored NP transfer while the ripening process and the size exclusion of aggregates decreased NP mobility. Decrease of water flow favored the exchange of solutes from the immobile to the mobile water in the porous medium, which in turn favored the aggregation of the NP and led to their natural attenuation. The result evidences how slight modifications of the environmental conditions can strongly influence the fate of NP in groundwater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA