Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 292: 133448, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973258

RESUMEN

The presence of various heavy metal ions in the industrial waste waters has recently been a challenging issue for human health. Since heavy metals are highly soluble in the aquatic environments and they can be absorbed easily by living organisms, their removal is essential from the environmental point of view. Many studies have been devoted to investigating the environmental behaviour of graphene-based nanomaterials as sorbent agents to remove metals from wastewaters arising by galvanic industries. Among the graphene derivates, especially graphene oxide (GO), due to its abundant oxygen functional groups, high specific area and hydrophilicity, is a high-efficient adsorbent for the removal of heavy and precious metals in aquatic environment. This paper reviews the main graphene, GO, functionalized GO and their composites and its applications in the metals removal process. The influencing factors, adsorption capacities and reuse capability are highlighted for the most extensively used heavy metals, including copper, zinc, nickel, chromium, cobalt and precious metals (i.e., gold, silver, platinum, palladium, rhodium, and ruthenium) in the electroplating process.


Asunto(s)
Grafito , Metales Pesados , Nanoestructuras , Contaminantes Químicos del Agua , Adsorción , Galvanoplastia , Humanos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
2.
Sci Rep ; 10(1): 13433, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778683

RESUMEN

Ionic Liquids are a promising alternative to water electrolytes for the electrodeposition of metals. These solvents have a much larger electrochemical window than water that expands the potential of electrodeposition. However, mass transport in Ionic Liquids is slow. The slow mass transport dramatically affects the rate of reactions at the solid-liquid interface, hampering the exploitation of Ionic Liquids in high-throughput electrodeposition processes. In this paper, we clarify the origin of such poor mass transport in the diffusion-advection (convection) regime. To determine the extent and the dynamics of the convection boundary layers, we performed Rotating Disk Electrode (RDE) experiments on model reactions along with the finite element simulation. Both the experiments and the finite element modelling showed the occurrence of peaks in the RDE curves even at relatively high rotation rates (up to 2000 rpm). The peak in the RDE is the fingerprint of partial diffusion control that happens for the relative extent of the diffusion and convection boundary layers. In looking for a close match between the experiments and the simulations, we found that the ohmic drop plays a critical role and must be considered in the calculation to find the best match with the experimental data. In the end, we have shown that the combined approach consisting of RDE experiments and finite elements modelling providing a tool to unravel of the structure of the diffusion and convection boundary layers both in dynamic and stationary conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA