Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 27(1): 40-47.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943413

RESUMEN

The aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a central reaction in biology. Multiple regulatory pathways use the aminoacylation status of cytosolic tRNAs to monitor and regulate metabolism. The existence of equivalent regulatory networks within the mitochondria is unknown. Here, we describe a functional network that couples protein synthesis to DNA replication in animal mitochondria. We show that a duplication of the gene coding for mitochondrial seryl-tRNA synthetase (SerRS2) generated in arthropods a paralog protein (SLIMP) that forms a heterodimeric complex with a SerRS2 monomer. This seryl-tRNA synthetase variant is essential for protein synthesis and mitochondrial respiration. In addition, SLIMP interacts with the substrate binding domain of the mitochondrial protease LON, thus stimulating proteolysis of the DNA-binding protein TFAM and preventing mitochondrial DNA (mtDNA) accumulation. Thus, mitochondrial translation is directly coupled to mtDNA levels by a network based upon a profound structural modification of an animal ARS.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Drosophila/fisiología , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas/fisiología , Serina-ARNt Ligasa/fisiología , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/fisiología , Animales , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Duplicación de Gen , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/genética
2.
J Cell Sci ; 127(Pt 11): 2577-88, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24652835

RESUMEN

The evolutionarily conserved family of Bucentaur (BCNT) proteins exhibits a widespread distribution in animal and plants, yet its biological role remains largely unknown. Using Drosophila melanogaster as a model organism, we investigated the in vivo role of the Drosophila BCNT member called YETI. We report that loss of YETI causes lethality before pupation and defects in higher-order chromatin organization, as evidenced by severe impairment in the association of histone H2A.V, nucleosomal histones and epigenetic marks with polytene chromosomes. We also find that YETI binds to polytene chromosomes through its conserved BCNT domain and interacts with the histone variant H2A.V, HP1a and Domino-A (DOM-A), the ATPase subunit of the DOM/Tip60 chromatin remodeling complex. Furthermore, we identify YETI as a downstream target of the Drosophila DOM-A. On the basis of these results, we propose that YETI interacts with H2A.V-exchanging machinery, as a chaperone or as a new subunit of the DOM/Tip60 remodeling complex, and acts to regulate the accumulation of H2A.V at chromatin sites. Overall, our findings suggest an unanticipated role of YETI protein in chromatin organization and provide, for the first time, mechanistic clues on how BCNT proteins control development in multicellular organisms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Fosfoproteínas/metabolismo , Cromosomas Politénicos/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , Secuencia Conservada/genética , Proteínas de Drosophila/genética , Evolución Molecular , Histonas/metabolismo , Mutación/genética , Proteínas Nucleares , Fosfoproteínas/genética , Unión Proteica , Transducción de Señal
3.
PLoS One ; 8(6): e66224, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776638

RESUMEN

Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.


Asunto(s)
Modelos Moleculares , Plasmodium falciparum/enzimología , Conformación Proteica , Triptófano-ARNt Ligasa/química , Triptófano/química , Cromatografía por Intercambio Iónico , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Unión Proteica
4.
Nucleic Acids Res ; 41(13): 6595-608, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677612

RESUMEN

The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Serina-ARNt Ligasa/genética , Aminoacilación de ARN de Transferencia , Animales , Antioxidantes/farmacología , Respiración de la Célula , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Glucógeno/metabolismo , Humanos , Ácido Láctico/metabolismo , Locomoción , Longevidad , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Biosíntesis de Proteínas , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA