Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 130(11): 2361-2374, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28815278

RESUMEN

KEY MESSAGE: We characterized the photoperiod-sensitive 7B - 1 male-sterile mutant in tomato, showing its allelism with stamenless - 2 . Mapping experiments indicated SlGLO2 , a B-class MADS-box family member, as a strong candidate to underlie the 7B - 1 mutation. The interest in male sterility (MS) dates back to a long time due to its perspective use in hybrid seed production. Here, we characterize 7B-1, a photoperiod-sensitive male-sterile (ms) mutant in tomato (Solanum lycopersicum L.), in which stamens are restored to fertility by permissive growth conditions in short days (SD). This system represents a useful strategy to facilitate the maintenance of the ms line. Examination of 7B-1 and other structural mutants, vms, sl, sl-2 and tap3, showed carpellization of stamens in the third floral whorl. 7B-1 exhibits strong expressivity in long days (LD), producing 100% aberrant anthers and virtually no seed production under open pollination, whereas it recovered fertility in SD. By genetic analysis, we demonstrate that 7B-1 is not allelic to sl nor to vms; instead it shows allelism to sl-2. Because the homeotic phenotype of the mutation resembles lesions to members of the B-class MADS-box transcription factor family, that specify petal and stamen identity, we pursued a candidate gene approach towards these targets. Using an interspecific backcross mapping population and markers linked to B-class MADS-box genes, significant linkage was found between 7B-1 and the SlGLO2 gene on Chr6. This result was supported by the 7B-1 phenotype that is similar to that of SlGLO2 knock outs and by the strong downregulation of the gene in the mutant. Although the lesion underlying the mutant phenotype is still elusive, our results pave the way for the final demonstration that SlGLO2 underlies 7B-1 and further the use of 7B-1 mutant in tomato hybrid seed production schemes.


Asunto(s)
Infertilidad Vegetal/genética , Solanum lycopersicum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Flores/genética , Ligamiento Genético , Marcadores Genéticos , Solanum lycopersicum/fisiología , Mutación , Fenotipo , Polen/genética
2.
PLoS One ; 10(9): e0137139, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26393929

RESUMEN

During its evolution and domestication Solanum lycopersicum has undergone various genetic 'bottlenecks' and extreme inbreeding of limited genotypes. In Europe the tomato found a secondary centre for diversification, which resulted in a wide array of fruit shape variation given rise to a range of landraces that have been cultivated for centuries. Landraces represent a reservoir of genetic diversity especially for traits such as abiotic stress resistance and high fruit quality. Information about the variation present among tomato landrace populations is still limited. A collection of 123 genotypes from different geographical areas was established with the aim of capturing a wide diversity. Eighteen morphological traits were evaluated, mainly related to the fruit. About 45% of morphological variation was attributed to fruit shape, as estimated by the principal component analysis, and the dendrogram of relatedness divided the population in subgroups mainly on the basis of fruit weight and locule number. Genotyping was carried out using the tomato array platform SolCAP able to interrogate 7,720 SNPs. In the whole collection 87.1% markers were polymorphic but they decreased to 44-54% when considering groups of genotypes with different origin. The neighbour-joining tree analysis clustered the 123 genotypes into two main branches. The STRUCTURE analysis with K = 3 also divided the population on the basis of fruit size. A genomic-wide association strategy revealed 36 novel markers associated to the variation of 15 traits. The markers were mapped on the tomato chromosomes together with 98 candidate genes for the traits analyzed. Six regions were evidenced in which candidate genes co-localized with 19 associated SNPs. In addition, 17 associated SNPs were localized in genomic regions lacking candidate genes. The identification of these markers demonstrated that novel variability was captured in our germoplasm collection. They might also provide a viable indirect selection tool in future practical breeding programs.


Asunto(s)
Genoma de Planta , Genómica , Solanum lycopersicum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Análisis por Conglomerados , Frutas/genética , Frutas/metabolismo , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Solanum lycopersicum/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Sitios de Carácter Cuantitativo
3.
Plant Mol Biol ; 89(3): 263-78, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26319515

RESUMEN

The tomato parthenocarpic fruit (pat) mutation associates a strong competence for parthenocarpy with homeotic transformation of anthers and aberrancy of ovules. To dissect this complex floral phenotype, genes involved in the pollination-independent fruit set of the pat mutant were investigated by microarray analysis using wild-type and mutant ovaries. Normalized expression data were subjected to one-way ANOVA and 2499 differentially expressed genes (DEGs) displaying a >1.5 log-fold change in at least one of the pairwise comparisons analyzed were detected. DEGs were categorized into 20 clusters and clusters classified into five groups representing transcripts with similar expression dynamics. The "regulatory function" group (685 DEGs) contained putative negative or positive fruit set regulators, "pollination-dependent" (411 DEGs) included genes activated by pollination, "fruit growth-related" (815 DEGs) genes activated at early fruit growth. The last groups listed genes with different or similar expression pattern at all stages in the two genotypes. qRT-PCR validation of 20 DEGs plus other four selected genes assessed the high reliability of microarray expression data; the average correlation coefficient for the 20 DEGs was 0.90. In all the groups were evidenced relevant transcription factors encoding proteins regulating meristem differentiation and floral organ development, genes involved in metabolism, transport and response of hormones, genes involved in cell division and in primary and secondary metabolism. Among pathways related to secondary metabolites emerged genes related to the synthesis of flavonoids, supporting the recent evidence that these compounds are important at the fruit set phase. Selected genes showing a de-regulated expression pattern in pat were studied in other four parthenocarpic genotypes either genetically anonymous or carrying lesions in known gene sequences. This comparative approach offered novel insights for improving the present molecular understanding of fruit set and parthenocarpy in tomato.


Asunto(s)
Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/genética , Transcriptoma/fisiología , Análisis por Conglomerados , Flores/genética , Flores/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Sci ; 180(3): 496-503, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21421397

RESUMEN

To dissect the role of gibberellins in tomato development, we have constitutively down-regulated the gene GA 20-oxidase1 (GA20ox1). Plants co-suppressed for GA20ox1 (referred to as CO-6 plants) showed vegetative defects typical of GA deficiency such as darker and mis-shaped leaves and dwarfism. CO-6 plants flowered as the controls, although their flowers had subtle defects in the pedicel and in organ insertion. Analysis of male development revealed defects before, during and after meiosis, and a final pollen viability of 22%. The development of female organs and gametes appeared normal. Pollination experiments indicated that the pollen produced by CO-6 plants was able to fertilize control ovaries, but the analysis of the progeny showed that the construct was not transmitted. Ovaries of CO-6 plants showed high fruit set and normal fruit development when pollinated with control pollen. However these fruits were completely seedless due to a stenospermocarpic behaviour that was evidenced by callose layering in the endothelium between 7 and 15 days after pollination. We conclude that GA20ox1 in tomato exerts specific developmental roles that are not redundantly shared with other members of this gene family. For reproductive male development, silencing of this gene is detrimental for pollen production and either gametophytically lethal or severely hampering seed germination. In the pistil, the co-suppression construct does not affect the progamic phase, nor fruit set and growth, but it interferes with seed development after fertilization leading to seed abortion.


Asunto(s)
Genes de Plantas , Giberelinas/metabolismo , Oxigenasas de Función Mixta/genética , Estructuras de las Plantas/crecimiento & desarrollo , Interferencia de ARN , Solanum lycopersicum/metabolismo , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Germinación/fisiología , Giberelinas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Meiosis/fisiología , Oxigenasas de Función Mixta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Polinización/fisiología , Reproducción/fisiología , Semillas/crecimiento & desarrollo
5.
Physiol Plant ; 132(4): 526-37, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18334005

RESUMEN

The development of the ovary into a fruit depends on pollination and fertilization. It has been proposed that the restriction of ovary growth before pollination is because of the stamens acting as negative regulators. Accordingly, the silencing of genes responsible for stamen identity has been correlated with parthenocarpy in different species. The tomato (Solanum lycopersicum L.) parthenocarpic fruit (pat) mutation associates autonomous ovary development with homeotic transformation of the anthers and aberrancy of ovules in the ovary. In this study, we tested the hypothesis that stamen aberrations and parthenocarpy in pat are driven by cues coming from the altered expression of class B MADS box genes. The data showed that the Pat locus is not allelic to either of the two tomato mutations putatively involved in the B function, stamenless (sl)-2 and pistillate (pi) or to genes encoding class B transcription factors. Whereas pat pi double mutants were not recovered because of tight linkage, pat sl-2 double mutants showed mainly epistatic effects. The developmental regulation of the Sl DEFICIENS (DEF) gene in the wild-type (WT) at anthesis as well as its differential transcription in the pat ovary suggest that it plays a role in the control of ovary growth. Accordingly, when compared with the WT, the gene was also differentially expressed in the parthenocarpic fruit-2 (pat-2) mutant, that is not allelic to pat and has normal ovule development. Altogether the results indicate that in tomato SlDEF plays a role in the control of ovary growth and that the pat mutation is located upstream of this regulatory cascade.


Asunto(s)
Proteína DEFICIENS/genética , Genes de Plantas , Mutación , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo
6.
Theor Appl Genet ; 116(5): 657-69, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18193185

RESUMEN

The study of phenotypic and genetic diversity in landrace collections is important for germplasm conservation. In addition, the characterisation of very diversified materials with molecular markers offers a unique opportunity to define significant marker-trait associations of biological and agronomic interest. Here, 50 tomato landraces (mainly collected in central Italy), nine vintage and modern cultivars, and two wild outgroups were grown at two locations in central Italy and characterised for 15 morpho-physiological traits and 29 simple sequence repeat (SSR) loci. The markers were selected to include a group of loci in regions harbouring reported quantitative trait loci (QTLs) that affect fruit size and/or shape (Q-SSRs) and a group of markers that have not been mapped or shown to have a priori known linkage (NQ-SSRs). As revealed by univariate and multivariate analyses of morphological data, the landraces grouped according to vegetative and reproductive traits, with emphasis on fruit size, shape and final destination of the product. Compared to the low molecular polymorphism reported in tomato modern cultivars, our data reveal a high level of molecular diversity in landraces. Such diversity has allowed the inference of the existence of a genetic structure that was factored into the association analysis. As the proportion of significant associations is higher between the Q-SSR subset of markers and the subset of traits related to fruit size and shape than for all of the other combinations, we conclude that this approach is valid for establishing true-positive marker-trait relationships in tomato.


Asunto(s)
Variación Genética , Carácter Cuantitativo Heredable , Solanum lycopersicum/genética , Marcadores Genéticos , Genotipo , Italia , Repeticiones de Minisatélite/genética , Filogenia , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA