RESUMEN
Nanostructured microelectrodes (NMEs) are an attractive alternative to yield sensitive bioassays in unprocessed samples. However, although valuable for different applications, nanoporous NMEs usually cannot boost the sensitivity of diffusion-limited analyses because of the enlarged Debye length within the nanopores, which reduces their accessibility. To circumvent this limitation, nanopore-free gold NMEs were electrodeposited from 45 µm SU-8 apertures, featuring nanoridged microspikes on a recessed surface of gold thin film while carrying interconnected crown-like and spiky structures along the edge of a SU-8 passivation layer. These structures were grown onto ultradense, vertical array chips that offer a promising strategy for translating reproducible, high-resolution, and cost-effective sensors into real-world applications. The NMEs yielded reproducible analyses, while machine learning allowed us to predict the analytical responses from NME electrodeposition data. By taking advantage of the high surface area and accessible structure of the NMEs, these structures provided a sensitivity for [Fe(CN)6]3-/4- that was 5.5× higher than that of bare WEs while also delivering a moderate antibiofouling property in undiluted human plasma. As a proof of concept, these electrodes were applied toward the fast (22 min) and simple determination of Staphylococcus aureus by monitoring the oxidation of [Fe(CN)6]4-, which acted as a cellular respiration rate redox reporter. The sensors also showed a wide dynamic range, spanning 5 orders of magnitude, and a calculated limit of detection of 0.2 CFU mL-1.
RESUMEN
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Electroquímicas , SARS-CoV-2 , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/sangre , Electrodos , Anticuerpos Antivirales/sangre , Oro/química , Inmunoensayo/métodos , Inmunoensayo/instrumentaciónRESUMEN
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as â¼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Asunto(s)
Nanopartículas , Nanoestructuras , Nanotecnología , Reproducibilidad de los Resultados , Dióxido de SilicioRESUMEN
Molybdenum disulfide (MoS2) is a very promising layered material for electrical, optical, and electrochemical applications because of its unique and outstanding properties. To unlock its full potential, among different preparation routes, electrochemistry has gain interest due to its simple, fast, scalable and simple instrumentation. However, obtaining large-area monolayer MoS2 that will enable the fabrication of novel electronic and electrochemical devices is still challenging. In this work, we reported a simple and fast electrochemical thinning process that results in ultra-large MoS2 down to monolayer on Au surfaces. The high affinity of MoS2 by Au surfaces enables the removal of bulk layers while preserving the first layer attached to the electrode. With a proper choice of the applied potential, more than 90% of the bulk regions can be removed from large-area MoS2 crystals, as confirmed by atomic force microscopy, photoluminescence, and Raman spectroscopy. We further address a set of contributions that are helpful to elucidate the features of MoS2, namely, the hyphenation of electrochemistry and optical microscopy for real-time observation of the thinning process that was revealed to occur from the edges to the center of the flake, an image treatment to estimate the thinning area and thinning rate, and the preparation of free-standing MoS2 layers by electrochemically thinning bulk flakes on microhole-structured Ni/Au meshes.
RESUMEN
Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.
RESUMEN
Reduced graphene oxide (rGO) layers are known to be significantly conductive along the basal plane throughout delocalized sp2 domains. Defects present in rGO implies in disordered systems with numerous localized sites, resulting in a charge transport governed mainly by a 2D variable range hopping (VRH) mechanism. These characteristics are observed even in multilayered rGO since the through-plane conduction is expected to be insubstantial. Here, we report on the multilayer assembly of functionalized rGO quantum dots (GQDs) presenting 3D VRH transport that endows elevated charge carrier mobility, ca â¼ 236 cm2 V-1 s-1. Polyelectrolyte-wrapped GQDs were assembled by layer-by-layer technique (LbL), ensuring molecular level thickness control for the formed nanostructures, along with the adjustment of the film transparency (up to 92% in the visible region). The small size and the random distribution of GQDs in the LbL structure are believed to overcome the translational disorder in multilayered films, contributing to a 3D interlayer conduction that enhances the electronic properties. Such high-mobility, transparency-tunable films assembled by a cost-effective method possess interesting features and wide applicability in optoelectronics.
RESUMEN
The unique electronic, mechanical and optical properties of graphene make it a remarkable 2D material, widely explored in a plethora of applications. However, graphene zero-bandgap and the production of defect-free pristine graphene in large areas still limit some applications. To circumvent these issues, graphene-derived 2D materials have arisen as attractive candidates for low-dimensional systems, which requires a better comprehension of their properties. Here, we report a detailed investigation of the conduction mechanisms of two functionalized reduced graphene oxides (rGOs) nanoplatelets, named GPAH and GPSS. The functionalized rGO nanoplatelets were bottom-up assembled via the layer-by-layer technique, enabling molecular-level thickness control of nanostructures with well-defined composition and structure. For the reported multilayered GPAH/GPSS films the charge carriers followed Mott's law, presenting a typical conduction behavior of 2D systems described by the Poole-Frenkel model. The multilayered GPAH/GPSS nanostructure presented a conductivity of 10-4 S cm-1, optical bandgap of â¼3.3 eV and a relative dielectric permittivity (ε r) of 6.4. Temperature-dependent I-V measurements indicated a strong variation of ε r below the critical temperature (T C = 237 K), associated with a high dipole reorientation in the formed GPAH/GPSS nanostructure. All these characteristics make the GPAH/GPSS nanocomposite attractive for graphene-oriented applications, such as electronic devices.
RESUMEN
Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (µ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high µ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.
RESUMEN
The fast growth of celiac disease diagnosis has sparked the production of gluten-free food and the search for reliable methods to detect gluten in foodstuff. In this paper, we report on a microfluidic electronic tongue (e-tongue) capable of detecting trace amounts of gliadin, a protein of gluten, down to 0.005 mg kg-1 in ethanol solutions, and distinguishing between gluten-free and gluten-containing foodstuff. In some cases, it is even possible to determine whether gluten-free foodstuff has been contaminated with gliadin. That was made possible with an e-tongue comprising four sensing units, three of which made of layer-by-layer (LbL) films of semiconducting polymers deposited onto gold interdigitated electrodes placed inside microchannels. Impedance spectroscopy was employed as the principle of detection, and the electrical capacitance data collected with the e-tongue were treated with information visualization techniques with feature selection for optimizing performance. The sensing units are disposable to avoid cross-contamination as gliadin adsorbs irreversibly onto the LbL films according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) analysis. Small amounts of material are required to produce the nanostructured films, however, and the e-tongue methodology is promising for low-cost, reliable detection of gliadin and other gluten constituents in foodstuff.
Asunto(s)
Gliadina/análisis , Nariz Electrónica , Glútenes , MicrofluídicaRESUMEN
This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al.
RESUMEN
A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.
RESUMEN
In this communication, we describe for the first time the integration of concentric electrodes (wrapping around the microchannel) in microchips. The use of such electrodes has been shown to be effective towards improvement of the sensitivity and detectability in pressure-driven flow platforms incorporating C(4)D.
Asunto(s)
Técnicas Electroquímicas/instrumentación , Análisis de Inyección de Flujo , Dimetilpolisiloxanos/química , Conductividad Eléctrica , Electrodos , Presión , Dióxido de Silicio/químicaRESUMEN
We report a glass/PDMS-based microfluidic biosensor that integrates contactless conductivity transduction and folic acid, a target for tumor biomarker, as a bioreceptor. The device presents relevant advantages such as direct determination--dismiss the use of redox mediators as in faradaic electrochemical techniques--and the absence of the known drawbacks related to the electrode-solution interface. Characterizations of the functionalization processes and chemical sensor are described in this communication.
Asunto(s)
Técnicas Biosensibles , Ácido Fólico/química , Biomarcadores de Tumor/análisis , Dimetilpolisiloxanos/química , Conductividad Eléctrica , Electrodos , Vidrio , Humanos , Técnicas Analíticas Microfluídicas , Neoplasias/diagnóstico , Oxidación-ReducciónRESUMEN
The interest in terahertz photometric and imaging measurements has motivated the development of bandpass resonant filters to be coupled to multiple-pixel devices such as bolometer arrays. Resonant grids are relatively simple to fabricate, exhibiting high transmission at the central frequency, a narrow bandpass, and good rejection of the side frequencies of the spectrum. We have fabricated filters centered at different frequencies between 0.4 and 10 THz, using photolithography and electroforming techniques. Transmission measurements have shown center frequencies and bandwidths close to the design predictions. The performance of the filters was found not to be critically dependent on small physical deformations in the mesh, becoming more noticeable at higher frequencies (i.e., for smaller physical sizes). Wider bandwidths, needed to attain higher sensitivities in the continuum, were obtained by changing the design parameters for filters at 2 and 3 THz.